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1 Introduction

Historical yield curves contain information about financial implications of political, institutional,
and technological changes. However, estimating yield curves using historical bond data requires
confronting several challenges: few bonds were issued, some bonds had discretionary features,
and macroeconomic data are unreliable. For a new data set containing prices, quantities, and
descriptions of all securities issued by the US Treasury between 1776 and 1960, this paper uses
modern sampling techniques to estimate and compare different approaches for inferring term
structures of yields on US federal bonds. An information criterion selects a non-linear state
space model with drifting parameters and stochastic volatility as a parsimonious model with
enough sufficient flexibility to pool data across periods in a time-dependent way. Exploiting
new computational techniques to handle non-linear models with time varying parameters lets
us work with very long time series that span different institutional arrangements. We thereby
build bridges between macroeconomics and US economic history.

A first challenge is that our data set is sparse along the cross-section dimension. We tackle
this problem by adopting a time-varying version of a statistical model proposed by Nelson and
Siegel (1987). Economists at policy institutions use a similar parameterization, but in inferring
a yield curve from observed prices and quantities they face a different challenge than we do.
Because they have a superabundance of cross-section data on prices and quantities at each date,
they solve an overdetermined inference problem. Our data are too sparse along the cross-section
dimension to allow us to use even a just-identified version of the commonly used procedure.
To confront this data deficiency, we enlist a “prejudice” or “induction bias” in the form of a
parameterized statistical model of a panel having scattered missing observations. The data and
statistical model tell us how much smoothing across time to do.

A second challenge is that 19th century US federal bonds often gave lenders and the Treasury
discretion over maturity dates, conversions, and other features. Our inference procedure assumes
that agents priced bonds under perfect foresight about those discretionary contract features.
To prevent such assumptions from influencing our inferences too much, we introduce bond-
specific idiosyncratic pricing errors. This decreases the influence of peculiar bonds on our yield
estimates while alerting us to situations when our assumptions prevent our pricing formulas
from consistently pricing our cross-section of bonds.

A third challenge is that 19th century macroeconomic data are unreliable. This prevents us
from directly estimating a stochastic discount factor process that prices macroeconomic risks,
especially at high frequencies. For this reason, we adopt a flexible approach that specifies a
general discount function process with a law-of-one price restriction across maturities for each
date, but that does not explicitly impose the absence of arbitrage. Our specification captures
various models ranging from affine asset pricing models to preferred habitat models; but using
it restricts us to estimating yield curves that bundle haircut risk and convenience premia into a
single time-varying pricing kernel.
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Another challenge is to infer posterior distributions for parameters of a complicated non-
linear statistical model without relying on the particle filter or Gibbs sampling. We approximate
posterior probabilities by deploying Hamiltonian Monte Carlo and No U-Turn sampling (HMC-
NUTS). Our data set has many peculiarities—such as changing numbers of observed assets,
bonds that have payoff streams of varying lengths, missing price observations, and relevant
sets of bond-specific pricing errors changing over time in complicated ways—that prevent us
from applying a “standard” Stan toolkit and force us to code our log posterior functions from
scratch. Our application of the DynamicHMC.jl package by Papp et al. (2021) can be used for
other economic models with tractable likelihood functions that do not easily fit into the Stan

framework.

Related Work Our work is related to Svensson (1995), Dahlquist and Svensson (1996), Cec-
chetti (1988), Annaert et al. (2013), Andreasen et al. (2019), Diebold and Li (2006) and Diebold
et al. (2008) who, like Gürkaynak et al. (2007) and ourselves, implement versions of the para-
metric yield curve model of Nelson and Siegel (1987).

Computing posterior distributions implied by our data and our statistical model is a formidable
task that we accomplish by using the HMC-NUTS algorithm of Hoffman and Gelman (2014)
and Betancourt (2018). While this estimator has been used extensively in statistics, economic
applications are scarce. Prominent exceptions are Bouscasse et al. (2021), who use it to study
the evolution of productivity in England from 1250 to 1870 and Farkas and Tatár (2021), who
estimate DSGE models with ill-behaved posterior densities.

Outline: Section 2 describes the dataset. Section 3 describes and compares a range of sta-
tistical models. Section 4 conducts a “laboratory” experiment as a robustness check for our
procedure. Section 5 discusses the model fit. Section 6 concludes.

2 Data Set and Its Limitations

2.1 Data Description

We have assembled prices, quantities, and descriptions of all securities issued by the US Treasury
between 1776 and 1960. We combined existing historical databases with transcription from the
digital archives of newspapers and government reports. Table 3 summarizes the different data
sources we have used in constructing the dataset. The data set for bond prices and quantities is
available on Github repository1 and construction methods are explained in Hall et al. (2018).Our
bond price data are monthly. When available, we use the closing price at the end of each month.
However, if a closing price is not available, then we use an average of high and low prices or an

1Our data are posted at https://github.com/jepayne/US-Federal-Debt-Public. Only data from publicly
available data sets are posted on the GitHub page.
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average of bid and ask prices. The quantity data are quarterly from 1776 to 1871 and monthly
thereafter. All quantity entries record the quantity outstanding on the last business day of the
period.

In order to estimate yield curves, we need to construct the currency flows promised by each
bond. For many of the early bonds in the sample, both the coupon dates and the maturity date
are ambiguous because we lack detailed information on each bond issue and because it is unclear
whether newspaper prices are ex or cum dividend. For the coupon dates, we used the following
rule. If Bayley (1882) lists exact coupon dates, then we use those dates. Otherwise, we identify
the coupon dates from cyclical decreases in the price series at the frequency of coupon payment.
For the maturity dates, we used the following rules. For bonds with explicit maturity dates, we
set the maturity to that date. Otherwise, we impose that investors had perfect foresight about
the early redemption and set the maturity date to be the date at which greater than 90% of the
outstanding bonds had been redeemed.

From 1862-1878, two currencies circulated: gold coins and non-convertible “greenback” dol-
lars. In this paper, we restrict attention to gold denominated bonds and exclude all bonds of
other denominations. We extend our approach to estimate greenback denominated yield curves
and exchange rate expectations in Payne et al. (2023).
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Figure 1: Our Dataset

The top panel depicts the number of securities with observed prices each month. The bottom panel depicts
maturities (in years) of observed securities. Darker lines indicate overlapping securities. Red bars correspond to
wars.
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2.2 Inference Challenges

Skilled researchers have estimated yield curves on US federal debt for the post-WW2 period, by
which time federal debts had become standardized and government bonds for sale had become
plentiful. We estimate yield curves starting in 1791 and so have to confront challenges posed
by peculiar structures of US federal bond markets before 1920. This requires us to address the
following questions.

Q1. How should we handle periods with sparse bond data? Figure 1 depicts a monthly time
series for the number of securities with observed prices and times to maturity of all outstanding
bonds. Often there were fewer than five price observations at a given date and no price observa-
tions in the late 1830s when the federal government had no outstanding debt. This means that
while we have “big data,” our unbalanced sample prevents us from applying commonly used
techniques from the yield curve estimation literature. Instead, we must posit a statistical model
that lets us learn about yields at all dates simultaneously by pooling information across time
periods.

Q2. How should we handle peculiar bonds? Throughout our sample, many US Treasury
securities had special features such as indefinite maturities associated with call or conversion
options. We start by ex post imputing perfect foresight about call dates and other discretionary
components of the contracts. We then look for bond-specific pricing errors and refine these
assumptions.

Q3. How should we handle haircut risk and convenience yields? There are many reasons to
think that different maturities of US federal debt carried different haircut risks and “convenience”
(or “liquidity”) yields at different times during the 19th century. We address this by packaging
haircut risk and convenience benefits into a single time varying pricing kernel that imposes that
haircut risk and convenience benefits can vary across maturities but not across bonds. This
allows us to estimate the prices of risky government promises.

Q4. How should we handle periods that provide sparse or inaccurate macroeconomic data?
In principle, we could attempt to use historical macroeconomic data to estimate a model of the
stochastic discount factor that prices macroeconomic risks. However, we are skeptical about the
quality of 19th century macroeconomic data, especially at high frequencies. For this reason, we
estimate a model that doesn’t directly specify a pricing kernel process.

3 Statistical Models

We consider the observed pattern in Figure 1 as representative of a prototypical historical sample:
sparse cross-sectional coverage at some periods with some maturities observed continuously for
a long time. Positing that the yield curves at consecutive dates are correlated with each other
allows us to fill the gaps we do not know in the cross-section with information we do know in
the time dimension. To this end, we implement Dynamic Nelson-Siegel (DNS) and Dynamics
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Nelson-Siegel-Svensson (DNSS) models as in Diebold and Rudebusch (2013). These models have
two characteristics that are important for us: (1) tight parametric structures in the cross-section
that come from the parsimonious 3-factor Nelson and Siegel (1987) or 4-factor Svensson (1994)
yield curve parameterizations, (2) utilization of information in the time dimension. While the
original motivation behind the DNS and DNSS models was to provide good yield curve forecasts,
we are primarily interested in their attractive information pooling properties.

In a departure from the literature, we add bond-specific pricing errors to the observation
equations of these models. We use this device because historical bonds, unlike Treasuries issued
after the 1920s, were not standardized, so the usual procedure of homogenizing the sample before
estimation is impractical. In subsections 3.1-3.4 we discuss a set of plausible assumptions that
provide alternative ways of parameterizing and pooling information about the yield curve. In
subsection 3.5 we evaluate these models based on their predictive accuracy.

3.1 Tight parameterization across maturities

Suppose that at time t we observe prices on an integer numberMt of coupon-bearing government
bonds. A given bond, i, promises a sequence of gold dollar coupon and principal payments
m(i)
t := {m(i)

t+j}∞j=1. We let p(i)
t denote the price of such a coupon-bearing gold dollar bond in

terms of gold. Let q(j)
t denote the gold price of a government promise to one gold dollar at time

t+ j. We call the sequence qt := {q(j)
t }∞j=0 a discount function.

As is standard in the yield curve estimation literature, we start by assuming that the law
of one price holds for a more or less homogeneous set of bonds. For each t ≥ 0 there exists a
discount function qt such that

p
(i)
t =

∞∑
j=1

q
(j)
t m

(i)
t+j =

〈
qt, m(i)

t

〉
.

This is a key identifying restriction: within each time period, there is a common discount function
that prices all bonds in our sample, i.e., there is no cross-sectional variation in how promises
of bond repayment are priced. Note that qt implicitly includes compensations for haircut risks,
convenience benefits or inflation risks so it should be thought of as the price of a risky promise.
Our specification allows these components to vary with the maturity j and time t, just not by
individual bond.

We parameterize the discount function qt by parameterizing the corresponding j-period
zero-coupon yields defined as y(j)

t := − log q(j)
t /j. We use a parametric family first proposed by

Nelson and Siegel (1987). As Diebold and Li (2006) argued, this family is flexible enough to
generate “typical yield curve shapes” (e.g., monotonic, humped, and S-shaped curves). To us,
a particularly attractive feature of this family is that it is compatible with estimates of recent
yield curves.2

2For example, Gürkaynak et al. (2007) use this form for the period 1961-1980. After 1980, they use an extension
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(I). Nelson and Siegel (1987): The j-period gold dollar zero-coupon yield is

y
(j)
t = Lt + St

(1− exp(−jτ)
jτ

)
+ Ct

(1− exp(−jτ)
jτ

− exp(−jτ)
)

where Lt, St, and Ct are hidden factors that characterize the level, slope, and curvature of the
yield curve at time t and τ is a fixed parameter that identifies the location of a potential hump
in the forward yield curve.

(II). Svensson (1994): The j-period gold dollar zero-coupon yield is

y
(j)
t = Lt + St

(1− exp(−jτ1)
jτ1

)
+ C1,t

(1− exp(−jτ1)
jτ1

− exp(−jτ1)
)

+ C2,t

(1− exp(−jτ2)
jτ2

− exp(−jτ2)
)

where Lt, St, C1,t, and C2,t are hidden factors that characterize the level, slope, first curvature,
and second curvature of the yield curve at time t and τ1 and τ2 are fixed parameters that identify
locations of the first and second hump in the forward yield curve, respectively.

Introducing a low dimensional parameterization of the yield curve in the maturity dimension
enables us to handle periods in which few bonds were traded. An alternative low dimensional
characterization of the yield curve would be a macroeconomic factor model, but 19th century
macroeconomic data are not reliable enough for this.

3.2 Bond specific measurement errors

Researchers estimating the modern yield curve typically undertake a pre-selection exercise to re-
strict their sample to a collection of bonds with relatively homogeneous characteristics. Because
our sample is sparse in the cross section, we cannot do that. Instead, we start by including
our full sample of bonds and introducing bond specific measurement errors, as described in
Assumption 1.

Assumption 1. Each bond i has a pricing error that is statistically independent from errors on
other bonds and has a time-invariant Gaussian distribution with mean 0 and standard deviation
σ

(i)
m . The observation equation becomes:

p̃
(i)
t =

〈
q(λt, τ), m(i)

t

〉
+ d

(i)
t σ

(i)
m ε

(i)
t

where p̃(i)
t denote the observed period-t price of bond i in terms of gold and d(i)

t is the Macaulay
duration of bond i in period t.

proposed by Svensson (1994) to allow for a second hump in the yield curve.
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Introducing these measurement errors serves two purposes. First, it lets our model decrease
the influences of peculiar bonds on our yield estimates. This means that bonds that violate
our assumption that all bonds can be priced with a common discount function are given less
weight in interpolating across maturities. Second, bond specific measurement errors inform us
about situations in which our collection of assumptions prevents us from consistently pricing
a cross-section of bonds. Starting from a presumption that all bonds can be priced with a
common discount function, we look for patterns in estimated pricing errors, the idea being that
misjudgments in our bond classification will show up as large, cluster-specific relative pricing
errors.

3.3 Flexible parameterization across time

Because prior to World War I, price data are sparse and coverage varies over time, we use a
multilevel (a.k.a. an hierarchical) statistical model to efficiently pool information over time.
Let λt be a collection of time-varying yield curve factors: (Lt, St, Ct) for the Nelson-Siegel
yield curve, (Lt, St, C1,t, C2,t) for the Svensson yield curve. We assume that vector λt follows
the flexible stochastic process described in Assumption 2. This is in contrast with Gürkaynak
et al. (2007) who—for the years after 1960—estimate yield curves period-by-period, assuming no
intertemporal dependence among the elements of λt. But, it is similar in spirit to Diebold and
Li (2006) who introduce mean-reverting factor dynamics to evaluate the Nelson-Siegel model’s
forecasting ability.

Assumption 2. Parameter τ is time-invariant. Parameter vector λt follows:

λt+1 = λ̄t + %(λt − λ̄t) + Σ
1
2
t ελ,t+1

where Σt is a covariance matrix with Σt = ΞtΩΞt, Ω is the time-invariant correlation matrix
and Ξt is a diagonal matrix containing marginal standard deviations σt that follow:

log σt+1 = log σt + Ξσεσ,t+1

where Ξσ is a positive definite diagonal matrix. In addition

λ̄t+1 =

 λ̄t + Ξελ̄,t+1 if t = k∆ for k ∈ N

λ̄t otherwise

where Ξ is a positive definite diagonal matrix and ∆ ≥ 1 is the frequency at which λ̄t updates.
Shocks ελ,t, εσ,t, and ελ̄,t are Standard Normal for t ≥ 1.

Four features of this model characterize how information is pooled across time:
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(i) Parameter matrix Σt governs how evidence about a yield curve at one date affects inferences
about yield curves at other dates. The closer are two dates to each other, the more
correlated are the associated yield curves, with Σt capturing what “close” means.3 The
limit Σ → 0 corresponds to complete pooling: here the yield curve is assumed to be
fixed over time so that each observation has equal influence with all other dates. Contrary
situations in which Σ→∞ call for no pooling: so there is no relationship between adjacent
parameter estimates and we end up using only period t information to estimate period t
yield curve parameters as in Gürkaynak et al. (2007). By inferring Σ from the data,
we learn how much pooling across time we should do to improve estimates in light of
intertemporal imbalances in data availability. In our context, “stochastic volatility” means
that the amount of pooling can be time varying throughout the sample.

(ii) We allow shocks to different components of λt to be correlated. This enables us to infer
relatively precise estimates of short ends of yield curves throughout our sample period. As-
suming that different parts of the yield curve follow correlated but time-invariant dynamics
allows us to transmit what we learn about co-movements between short- and long-term
yields from times when many maturities are outstanding (as in the second half of the
19th century) to times when data about short-term yields are scarce (as in the early 20th
century).

(iii) Yield curve parameter processes are decomposed into permanent and temporary compo-
nents: the vector λ̄t denotes a slow moving “long-run mean” to which λt reverts, and
the matrix % governs the rate at which this mean reversion occurs. We refer to λ̄t as a
“low-frequency” component and λt − λ̄t as a “temporary” component of λt. We impose
this structure to allow for potential mean reversion in the yield curve without imposing a
common mean across the entire period from 1791-1933.

(iv) The long-run mean λ̄t follows a random walk with updates at frequency ∆. As ∆ → ∞,
the frequency of parameter updates goes to zero, providing a state-space model with
time-invariant long-run mean λ̄. Setting ∆ > 1 to low values is a compromise between
identifying the long-run mean with high accuracy, on the one hand, and letting it move
over time, on the other hand. In effect, we divide the period of interest into subperiods of
equal length ∆ and assume complete pooling within subperiods and partial pooling across
subperiods. We set ∆ = 24 months as a compromise between identifying the long-run
mean with high accuracy and letting it move over time.

3One might be inclined to call this procedure “stochastic smoothing” because consecutive λt vectors are linked
by a sequence of random variables {ελ,t}. Alternatively, one could define a deterministic smoothing function that
specifies the sequence {λt} in terms of parameters λ0 and Σ, mimicking frequently used averaging techniques such
as a moving-average. Modeling the sequence {λt} as a stochastic process allows our algorithm to deploy a much
richer set of smoothing functions.
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3.4 A Nonlinear State Space Model of Bond Prices

Putting everything together, we can write our generic nonlinear state space model as:

p̃
(i)
t =

〈
q(λt, τ), m(i)

t

〉
+ d

(i)
t σ

(i)
m ε

(i)
t bonds

λt+1 = λ̄t + %(λt − λ̄t) + Σ
1
2
t ελ,t+1 yield curve parameters

log σt+1 = log σt + Ξσεσ,t+1 stochastic volatility

λ̄t+1 =

 λ̄t + Ξελ̄,t+1, if t = k∆ for k ∈ N

λ̄t otherwise
long-run mean

with ε
(i)
t ∼ N (0, 1) ∀i, ελ,t ∼ N (0, I3) ελ̄,t ∼ N (0, I3) εσ,t ∼ N (0, I3) ,∀t ≥ 1

where p̃(i)
t denotes the observed period-t price of bond i in terms of gold. We estimate versions

of this state space model using Bayesian methods. In particular, we approximate posterior
probabilities by deploying Hamiltonian Markov Chain and No U-Turn sampler (HMC-NUTS).
The posterior distribution is constructed by adding up Gaussian log-likelihoods associated with
the independent shocks and combining them with priors, as described in Appendix A. We specify
weakly informative prior distributions for the model’s hyper-parameters for the specific purpose
of regularizing our estimator and facilitating smooth operation of the sampling algorithm.

3.5 Horse Race

Our subsection 3.4 state space model combines a collection of potential ways to manage the
deficiencies of our historical data-set. In this subsection, we investigate which are important.
We study the following models that combine different parameterizations of the discount function
q with different assumptions on the way we pool information over time.

Name Parameterization λ-dynamics stoch. vol. correlated shocks

Model A Nelson-Siegel random walk No No

Model B Nelson-Siegel random walk No Yes

Model C Nelson-Siegel random walk Yes Yes

Model D Nelson-Siegel mean-reversion Yes Yes

Model S Svensson random walk No Yes

Table 1: Models For Comparison

Conditional on q, the observation equations of these different models identical. The models
differ in their state equations, but all are special cases of the non-linear state space model in
Section 3.4. The first four rows of Table 1 are ordered to be increasing in complexity. We do not
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include the Svensson model with stochastic volatility or mean reversion because the complexity
of this model appears prohibitively large relative to our limited data.

Comparison Approach: We want to compare these models based on their predictive perfor-
mances, not on their fits. This prompts us to use various cross-validation and information
criteria that are meant to approximate models’ predictive accuracies. In what follows, we will
use the Watanabe-Akaike Information Criterion (WAIC) proposed by Watanabe (2010), which
provides an approximation of the out-of-sample deviance, and the Pareto-Smoothed Importance
Sampling Cross-Validation (PSIS) of Vehtari et al. (2017), which provides an approximation
of the model’s cross-validation score.4 Both of these criteria are point-wise, i.e., prediction is
considered observation-by-observation, which means that they come with approximate standard
errors.

Model WAIC s.e. ∆WAIC s.e. PSIS s.e. ∆PSIS s.e.

Model A 26156 233 5553 207 12922 109 2773 100

Model B 23107 225 2504 180 11417 125 1268 88

Model C 20602 289 0 - 10149 141 0 -

Model D 22282 258 1680 226 10997 111 847 108

Model S 20582 260 -20 196 10154 125 6 91

Table 2: Model Comparison

The first column provides the model label. The second and third columns depict the WAIC and associated
standard error. The fourth and fifth columns depict the difference from the WAIC of Model C and its associated
standard error. The sixth and seventh columns depict the PSIS and associated standard error. The eighth and
ninth columns depict a difference from the minimum PSIS and its associated standard error. We highlighted in
red the models that have the lowest WAIC and PSIS, within standard error.

Model selection: Table 2 compares performance of the models. Evidently, both criteria agree
that model C (Nelson-Siegel with random walk λ-dynamics, stochastic volatility, and correlated
shocks) and model S (Svensson model with random walk λ-dynamics, no stochastic volatility,
and correlated shocks) are preferred to the other models. This indicates that adding stochastic
volatility to the standard Dynamic Nelson-Siegel improves its predictive accuracy because it lets
the degree of information pooling vary over time. In contrast, mean reverting parameters are
not called for in light of the additional complexity they introduce.

However, the criteria are unable to discriminate between models C and S because they ex-
hibit very similar predictive accuracy. We view the two models as capturing different features of

4These criteria are complementary to regularizing priors. Regularization reduces overfitting while predictive
criteria measure it. See also Gelman et al. (2014).
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historical data. The Dynamic Nelson-Siegel model with stochastic volatility provides flexibility
in how to pool information over time, which turns out to be particularly important during wars.
The Dynamic Nelson-Siegel-Svensson model without stochastic volatility brings more flexibility
in fitting long maturities by allowing for a second hump that is largely independent of the short
end of the yield curve. From observed yields-to-maturity, we do see evidence to suggest that
there might be periods with a second hump at long maturities (greater than 15-20 years). How-
ever, the estimate of the Svensson model gives humps at approximately 1.4 and 7.2 years, where
the first hump is activated during the War of 1812 and the Civil War. This makes us worry that
the estimate of the Svensson model is overfitting short maturity bonds during wars because the
model does not allow sufficient flexibility in the amount of information pooling during wars. An
additional concern is that the second hump does not actually help to fit the long end of the yield
curve, which is its purpose. For these reasons, we choose the Dynamic Nelson-Siegel model with
stochastic volatility but without a second hump.

Fitting prices vs fitting yields: We estimate parameters directly from bond prices adjusted by
the bond’s duration as in Gürkaynak et al. (2007). An alternative approach in the literature is
to minimize yield errors. The two approaches are conceptually equivalent but for the following
reasons we found it more practical to minimize price errors. Since zero-coupon yields are not
directly observed, minimizing yield errors involves first producing approximate zero-coupon yield
observations. To resolve this issue, Diebold and Li (2006) and Diebold et al. (2006) use the
approximate zero-coupon yields calculated by Fama and Bliss (1987) with their proprietary
“bootstrap” method. In principle, we could extend this methodology back through our historical
sample. However, we are concerned that the cross-sectional sparsity of our data-set will impair
the procedure’s accuracy. We see little benefit from introducing these complications since, unlike
Diebold and Li (2006) and Diebold et al. (2006), we include stochastic volatility. That would
make our model non-linear even if were to minimize yield errors. For these reasons we minimize
price errors.

As a robustness check, in Appendix C, we minimize the difference between model implied
and observed yields-to-maturities. We show that, as we had anticipated, results are broadly
similar to our estimates and have somewhat higher (within 2.5 standard error) WAIC and PSIS
than our chosen model.

4 Laboratory Experiment

The Nelson-Siegel parameterisation can capture a wide range of yield curve shapes. However,
as was shown in Figure 1, we want to infer yield curve parameters from relatively few price
observations, with most observed prices being for long term bonds. How can we recover short
yields? To show how pooling information over time can help with this matter, we conduct
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Figure 2: Comparison of Posteriors to True Values.

Artificial samples with 4 bonds (T = 20 year). Case 1: [top row] (i) 6 % (semi-annual), 10 year maturity,
σ

(i)
m = 3; (ii) 3 % (semi-annual), 20 year maturity, σ(i)

m = 2; (iii) 5 % (semi-annual), 30 year maturity, σ(i)
m = 1;

(iv) 2 % (semi-annual), 40 year maturity, σ(i)
m = 4. Case 2: [bottom row] (i) 6 % (semi-annual), 25 year

maturity, σ(i)
m = 3; (ii) 3 % (semi-annual), 33 year maturity, σ(i)

m = 2; (iii) 5 % (semi-annual), 30 year maturity,
σ

(i)
m = 1; (iv) 2 % (semi-annual), 40 year maturity, σ(i)

m = 4.

the following “laboratory experiment”: taking a particular yield curve process (in line with
our Subsection 3.4 state space model) as given, we use it to price four bonds with known
characteristics (maturity, coupons, pricing error), then perform our econometric procedure, and
compare our posterior yield estimates to the “true” values used to generate our artificial data.
We investigate two situations:

Case 1: long term bonds with maturity dates that are distributed relatively evenly over the
sample period

Case 2: there is an extended period without bonds that mature in less than 10 years

We create bonds that are “representative” of our sample in the sense that originally they are all
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long term bonds. Here information about short yields must be recovered from prices of bonds
that were originally long term but are now approaching maturity.

Rows of Figure 2 depict the outcomes of the two scenarios. The red lines are the true 1-year
(middle column) and 10-year yields (right column) that were used to generate prices of the four
bonds, the characteristics of which are depicted in the left column. The blue lines depict the
posterior median and the shaded blue area depicts the 90% interquantile range of the posterior
distribution. Even though we have few price observations for bonds with short maturity, the
algorithm still does a good job of recovering the true 1-year yield under the first scenario (Case 1).
Thus, at least when the common pricing kernel assumption is a good description of the data,
observing a few long term bonds is sufficient to recover the short end of the yield curve as long
as the maturity dates of the observed bonds are distributed relatively uniformly over time. This
is what our model’s ability to pool information buys us.

To illustrate this point, Case 2 represents a situation in which all four bonds mature after 20
years and shorter term securities are not issued in the meantime,5 so our model has little chance
to utilize information about short yields. The result is depicted in the bottom row of Figure 2.
Evidently, the algorithm can still recover the true 10-year yield (it can observe bonds close to
10-years in the second half of the sample) but it has much more trouble trying to recover the
1-year yield. The posterior 90% interquantile range is large, and the posterior median departs
significantly from the true value for many periods. This illustrates that the structure of our
Nelson-Siegel parameterisation does not automatically generate tight posteriors. We do need
some observations of prices for short maturity bonds to recover the yield curve.

5 Fits

To demonstrate why we believe that our chosen yield curve model provides a reasonable summary
of the available bond price data, we now show that: (1) duration-weighted mean absolute price
errors are generally small for all bonds that we include in the estimation of yield curves, (2)
differences between observed and model-implied yields-to-maturities are small over time and
across maturities, and (3) yields-to-maturity of observed bonds concentrate around our estimated
par yield curves.

5.1 Small pricing errors across bonds

An important part of our approach is the assumption of bond-specific pricing errors. This allows
the algorithm to decide whether particular bonds are likely to violate the common discount
function assumption. The black crosses in Figure 3 depict duration-weighted mean absolute
pricing errors for each bond included in the analysis. They are computed as time averages of

5This situation describes the last decade of the eighteenth century well, during which we observe only the three
“Hamilton bonds.”
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Figure 3: Posterior Distributions of Bond-Specific Pricing Error Variances

Each boxplot represents the interquartile range (IQR) and median (orange line) of the posterior distribution of
σ

(i)
m —that is the standard deviation of the bond-specific pricing error—for each bond used in the estimation.

Black crosses represent mean absolute price errors computed from the difference between observed and
model-implied prices for each bond.

absolute differences between observed prices and posterior median price forecasts weighted by
the inverse Macaulay duration. Evidently, our yield curves estimate prices of included bonds
fairly well, with similar errors across different bonds. This indicates good in-sample fit and also
that imposing a common discount function provides a good description of the gold dollar bonds
with maturities larger than 1 year.

Similarly, estimated standard deviations of bond-specific pricing errors, σ(i)
m , are also small.

The boxplots in Figure 3 depict summary statistics of corresponding posterior distributions. The
relative magnitudes of these estimates indicate how much particular bonds influence estimated
yield curves. Our algorithm assigns relatively less weight to bonds with large estimated σ

(i)
m

values. Figure 3 shows that the set of bonds with relatively little influence more or less coincides
with bonds having the highest duration-weighted mean absolute pricing errors.

5.2 Small yield errors over time and across maturities

Figure 4 depicts cross-sectional averages (over bonds for each month) of pricing errors, as mea-
sured by the absolute difference between observed prices and posterior median price forecasts.
The largest errors are associated with the War of 1812, the Civil War, and the First World War.
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Figure 4: Mean Absolute Pricing Errors

The black line depicts the cross-sectional average (over bonds for each month) of the absolute difference between
observed prices and posterior median price forecasts. The light gray intervals depict recessions as dated by
Davis (2006) for the 1796-1914 period and NBER recessions thereafter. The light red intervals depict wars (from
left to right: the War of 1812, the Mexican-American War, the Civil War, the Spanish-American War, and
World War I).

This suggests that our model struggles to price cross-sections of bonds during wars.
To obtain a measure of fit with a more interpretable scale, we take the posterior median

of our zero-coupon yield estimates, compute the implied yields-to-maturity for each bond at
each month, and compare them to the observed yields-to-maturity. The panels of Figure 4
report different aspects of these yield errors. The left panel depicts distributions of yield errors
for specific maturity bins. We see that on average our parametric yield curve specification
fits observed yield-to-maturities well and without systematic differences across maturities larger
than 1 year. The right panel depicts cross-sectional means and standard deviations (over bonds
for each calendar year) of yield errors. The mean error stays close to zero and its variation is
also typically small but becomes relatively large during the early 19th century and the Civil
War, indicating that we have the most difficulty pricing the cross section of bonds during those
years.

5.3 Observed yields-to-maturity are close to estimated par yield curves

Another argument favoring the plausibility of our estimated yield curves is that Congress and
the Treasury often aimed to set coupon rates on new bonds so that initially they would sell
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Figure 5: Par Yield Curve Estimates vs. Yield-to-Maturities.

The solid orange lines depict the median of our posterior for the gold dollar par yield curve at four specific dates
(in gray boxes). The light orange bands around the posterior median depict the 95% interquantile ranges. Blue
dots represent observed yield-to-maturities for bonds that are outstanding at the given period. Green stars
depict model implied yield-to-maturities for the same bonds–computed from the posterior median price forecasts.

at par. That outcome would make their yields-to-maturities equal their coupon rates. This
practice implies that we should expect observed yields-to-maturities to be close to a so called
par yield curve: one that shows the required coupon rate for a bond with maturity j to sell at
par. This object is a non-linear, one-to-one function of the zero-coupon yield curve, so we can
use our estimated model to see how well observed yields-to-maturities line up with estimated par
yield curves, at least in “non-emergency” periods when issuing new bonds at par was feasible.

The subplots of Figure 5 depict estimated par yield curves (orange lines) at dates that are
more or less representative of some sub-periods of our sample. Observed and model-implied
yields-to-maturities for the outstanding bonds are represented by blue dots and green stars,
respectively. The close proximity of dots and stars indicates that the fit of our model is quite
good across the whole maturity spectrum: our model is able to replicate a variety of yield curve
shapes and succeeds in capturing that yields at the long end of the maturity spectrum are often
lower than yields at medium horizons irrespective of how short-term yields behave.6 Moreover,

6In other words, allowing for a “hump” in the yield curve is often necessary.
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comparing the blue dots to the estimated par yield curves illustrates that Congress’s objective
to sell bonds at par was often achieved (for example, see the subplots for 1805, 1821 or 1926).

6 Concluding Remarks

We have compared applications of alternative statistical models of yield curves to an historical
data set that is sparse in the cross section, has bonds with peculiar features, and covers periods
with major policy changes and wars. Information and cross validation criteria suggest that a
Dynamic Nelson Siegel model with stochastic volatility and correlated shocks is a good model.
The model fits the data with small errors and performs well in a “laboratory experiment” in
which we generate data designed to mimic our historical sample of US federal bond prices.
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Figure 6: Implied Prior Distribution of the Initial Yield Curve and the 10-year Zero-Coupon
Yield.

The solid grey lines depict the mean, and dotted lines depict the 25% and 75% percentiles of the prior
distribution. Shaded areas represent interquantile ranges so dark areas are indicative of concentrated prior
probability.

A Priors

Priors: Assumptions 2 give rise to a flexible model of the gold denominated yield curve process
that is pinned down by a small set of hyper-parameters. Aa prior on τ and the initial (time 0)
λ vector that effectively determines an “average yield curve” for the whole sample period. We
use log-normal prior for τ and independent log-normal priors for the three entries of the initial
λ vector that implies the prior distribution for the initial yield curve shown in the left panel of
Figure 6. Our prior imposes a flat “average yield curve,” i.e., for all maturities the prior mean
is 10% with standard deviation of around 5%. Underlying priors are:

λ0,0 ∼ logN
(
10− β, 6

)
, λ1,0 ∼ logN

(
10− β, 6

)
,

λ2,0 ∼ logN
(
10− β, 15

)
, τ ∼ logN (60, 60).

While the “average yield curve” influences our posterior distribution in the early part of the
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Table 3: Summary of Data Sources

Series Period Frequency Source

Bond prices 1776-1839 M Razaghian (2002), Sylla et al. (2006) and Global Financial
Data.

1840-1859 M Razaghian (2002), The New York Times, and Global Fi-
nancial Data

1860-1925 M Commercial & Financial Chronicle, Global Financial Data,
Merchant’s Magazine, The New York Times, US Treasury
Circulars, and Martin (1886).

1925-1960 M CRSP US Treasury Database.

Quantities 1790-1871 Q Bayley (1882).

1872-1960 M U.S. Department of the Treasury (2015).

Contract Info. 1790-1960 1790-1871 from Bayley (1882).

1872-1960 from U.S. Department of the Treasury (2015).

Gold/Goods 1800-1860 M Wholesale Price Index (Warren/Pearson)

Exchange Rate 1860-1913 M U.S. Index of the General Price Level (NBERMacrohistory:
Series NBER 04051)

1913-2020 M CPI (BLS)

GDP 1790-2020 A Officer and Williamson (2021)

Gold/Greenbacks 1862-1878 M Yale SOM ICF dataset

Exchange Rate
1 Repository for bond time series: https://github.com/jepayne/US-Federal-Debt-Public
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sample, it is much less influential later due to the random walk component in λt. The right
panel of Figure 6 illustrates how the prior mean and “prior coverage bands” for the 10-year yield
grow over time. How much our prior for λ0 affects the posterior distribution for later periods
depends mainly on priors for {λ̄t}, %, and {Σt} that we specify as follows:

• For the correlation matrix Ω we use the LKJ prior with a concentration parameter η = 5,
which is a unimodal but fairly vague distribution over the space of correlation matrices.
For η values larger than 1, the LKJ density increasingly concentrates mass around the unit
matrix, i.e., favoring less correlation.7

• For the initial standard deviations σ0 we use independent log-normal priors: σi,0 ∼
logN (0.05, 0.1).

• We use common exponential priors on the standard deviation in the diagonal of Ξσ, with
the rate parameter tuned so that a priori the probability that σ(i)

σ > 0.15 is lower than
5%. The prior mean is 0.05.

• We use independent normal priors on the entries of %. The prior mean is chosen as a
diagonal matrix with diagonal entries [0.8, 0.8, 0.8] while we set the standard deviation to
0.3 for all 9 entries of %.

• We use independent log-normal priors for the three entries of the initial λ0 (permanent
component of λ):

λ0,0 ∼ logN
(
10− β, 6

)
, λ1,0 ∼ logN

(
10− β, 6

)
, λ2,0 ∼ logN

(
10− β, 15

)
• We use common exponential priors on the standard deviation in the diagonal of Ξ, with

the rate parameter tuned so that a priori the probability that σ̄(i) > 0.15 is lower than
5%. The prior mean is 0.05.

We use common exponential priors on the standard deviation of pricing errors, σ(i)
m , with the

rate parameter tuned so that a priori the probability that σ(i)
m > 30 is lower than 5%. Prior

mean is 10.

B Estimation Details

Alternative to Particle Filtering: Estimating the model in Section 3.4 involves a complicated
filtering problem due to the non-linear nature of bond prices and the existence of stochastic
volatility. A standard approach to such non-linear filtering problems is to use some version of
particle filtering. However, thanks to the length and other complexities of our data set, well-
known drawbacks of particle filters, such as sample degeneracy and impoverishment, become

7See Lewandowski et al. (2009). The LKJ distribution is defined by p(Ω|η) ∝ det(Ω)η−1. For η = 1, this is a
uniform distribution.
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particularly acute in our case. We deploy an alternative strategy and approach the problem
as a high-dimensional statistical model that “treats latent variables as parameters.”8 From this
viewpoint, the model has more than 7, 500 parameters. To cope with such a high-dimensional
parameter space, we use Hamiltonian Monte Carlo with a “No-U-Turn Sampler” of Hoffman and
Gelman (2014), along with subsequent developments described in Betancourt (2018). The basic
idea is to use slope information about the log-likelihood to devise an efficient Markov Chain
Monte Carlo sampler. This method can attain a nearly i.i.d. sample from the posterior by
proposing moves to distant points in the parameter space through (an approximately) energy
conserving simulated Hamiltonian dynamic.

Computational issues: While Stan might seem an obvious choice for the task at hand—it is a
well-developed software that efficiently implements the HMC-NUTS sampler—non-trivial fea-
tures of our data set make it inconvenient for our purposes. Some of our main technical difficulties
are: (1) the number of observed assets changes over time, (2) each bond has a payoff stream
of varying length, (3) there are many periods without price observations, (4) the set of bond-
specific pricing errors that are relevant at a given period t changes over time in a complicated
fashion, etc. To tackle these difficulties, we code the log posterior function of our model from
scratch and feed it into the DynamicHMC.jl package by Papp et al. (2021) which is a robust
implementation of the HMC-NUTS sampler mimicking many aspects of Stan. An important
advantage of this package is that it allows the user to provide the Jacobian of the log-posterior
manually. Not relying on automatic differentiation for a model with 7, 500+ parameters cuts
running time by several orders of magnitude. In most cases, we use the recommended (default)
tuning parameters for the NUTS algorithm.

C Minimizing Price vs Yield Errors

Model WAIC s.e. ∆WAIC s.e. PSIS s.e. ∆PSIS s.e.

Model C (price) 20602 289 0 - 10149 141 0 -

Model C (yield) 21053 271 451 213 10373 134 224 105

Table 4: Estimating Model C (Nelson-Siegel with random walk λ-dynamics, stochastic volatility,
and correlated shocks) by minimizing duration-adjusted price errors (first row) vs by minimizing
yields-to-maturities (second row).

8We use quotation marks because in the Bayesian paradigm there is no clear distinction between latent variables
and parameters.
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