The US Treasury Funding Advantage Since 1860

Clemens Lehner
Columbia

Jonathan Payne Princeton Jack Shurtleff
Fed Board

Bálint Szőke Fed Board

NBER SI Asset Pricing

July 11, 2025

Disclaimer: The views expressed here are those of the authors and do not necessarily represent the views of the Federal Reserve Board or its staff.

- ▶ Funding Advantage: US gov borrows at lower interest rates than the private sector
 - ...even for bonds with identical cash flows and credit risk
 - \Rightarrow US government can issue debt not fully backed by future surpluses

Yield spread between *j*-period "plain vanilla", like-for-like bonds:

$$\begin{array}{c} \chi_t^{(j)} := & \widetilde{y}_t^{(j)} - & y_t^{(j)} \\ \text{Funding} & \text{Highest-grade} & \text{US Treasury} \\ \text{advantage} & \text{private debt} & \text{debt} \\ \end{array} > 0$$

- ▶ Data challenge: observed bonds are heterogeneous (tax advantages, options, etc.)
- ▶ This paper: first term structure of tax- and option-adjusted Aaa-Treasury spreads
 - $-\chi_t$ has been mismeasured and exaggerated during key episodes of 20th century
 - Build asset pricing model for χ_t : explained by usual bond price risk factors

Historical Bond Samples

New Data:

- ▶ New Corporate Bond Data: prices & features for highest-grade bonds (1860-)
 - Pre-1974: CFC, NYT, Moody's Barron's; Post-1974: Lehman Warga, & Merrill Lynch
- ▶ Treasury Bond Data: prices & features for all treasuries (1790-)
 - Combines Hall-Payne-Sargent-Szőke data (1790-1940) with CRSP (1926-2024)

Key contribution:

- ▶ Identify institutional details that matter for historical bond pricing
- ▶ Find relevant bond characteristics and orgnize bonds accordingly

Historical Samples Exhibit Substantial Bond Heterogeneity

Tax Advantages

- ▶ Tax Exemptions (1917-1941): from federal income taxes on government bonds
- ► Capital Gains Tax Advantage on low coupon bonds

Tax Exemptions

Bonds Trading Below Par

Embedded Options

► Call options, Exchange privilege

- Composition of callable bonds
- ▶ Flower Bonds (1917-1971): Could be redeemed at par to pay the bondholder's federal estate taxes upon their death
 - Tax provision is valuable when market prices are below par (\approx inflation put):
 - \uparrow Inflation \Rightarrow \uparrow Interest rates \Rightarrow \downarrow (Price Par) \Rightarrow \uparrow Put Moneyness

Price Effect of Taxation and Flower Bonds

Commonly Used Measure of Long-Maturity Funding Advantage

"Inflation Put" in Government Bonds \Rightarrow Mismeasured Spread

How can we make progress?

With Plain Vanilla Bonds

Law of one price: common discount function, $q_t := \{q_t^{(j)}\}_{j \ge 1}$, to price all bonds

$$p_{i,t} = \sum_{j=1}^{\infty} q_t^{(j)} c_i^{(j)} + \underbrace{\varepsilon_{i,t}}_{\text{price error}}$$

Identification: simultaneously observe bonds with different maturities and coupons

Yield Curve Estimation

With Bond Heterogeneity

Law of one price: common discount function, $q_t := \{q_t^{(j)}\}_{i \ge 1}$, to price all bonds

$$p_{i,t} = \sum_{j=1}^{\infty} q_t^{(j)} \underbrace{z_i^{(j)}(\eta_t, p_{i,t})}_{\text{tax advantages}} c_i^{(j)} + \underbrace{v_i(\theta_t, p_{i,t})}_{\text{option value}} + \underbrace{\varepsilon_{i,t}}_{\text{price error}}$$

... time-varying wedges $(z_{t,i}, v_{t,i})$ with theory-consistent forms:

$$z_i^{(j)}(\eta_t, p_{i,t}) := f\left(\text{determinants of tax advantage}\right)$$

$$= \exp\left(\frac{\eta_{t,0}\mathbbm{1}}{\max}\left\{\frac{\text{Partial}}{\max}{\exp(\frac{1}{2})}\right\} + \frac{\eta_{t,1}}{\max}\left\{\frac{\text{Fully}}{\max}{\exp(\frac{1}{2})}\right\} + \frac{\eta_{t,2}}{\max}\left\{\overline{y}_{t,i} - cp_i/\widehat{E}_t[p_{t+s,i}], \ 0\right\}\right)$$

Tax Exemptions

July 11, 2025

Low Coupons Flower

With Bond Heterogeneity

Law of one price: common discount function, $q_t := \{q_t^{(j)}\}_{j \ge 1}$, to price all bonds

$$p_{i,t} = \sum_{j=1}^{\infty} q_t^{(j)} \underbrace{z_i^{(j)}(\theta_t, p_{i,t})}_{\text{tax advantages}} c_i^{(j)} + \underbrace{v_i(\theta_t, p_{i,t})}_{\text{option value}} + \underbrace{\varepsilon_{i,t}}_{\text{price error}}$$

...time-varying wedges $(z_{t,i}, v_{t,i})$ with theory-consistent forms:

$$v_i^f(\theta_t, p_{i,t}) := f\Big(\text{moneyness}, \text{ exercise period, interest rate volatility}\Big)$$

= $\exp\Big(\theta_{t,0} + \theta_{t,1} \max\{\overline{y}_{i,t} - \overline{y}_{i,t}^p, 0\}\Big) M_{i,t}^{\theta_{t,2}}$

Identification: observe bonds with/without options + with/without tax advantages

ightharpoonup estimate (q_t, η_t, θ_t) via non-parametric Kernel Ridge (Filipovic, Pelger, and Ye (2025))

Tax Exemptions Low Coupons Flower Kernel Ridge Price Errors

What do we find?

US Funding Advantage 1860-2024

Commonly Used Measure Overestimates US Funding Advantage...

...Because It Includes Options and Tax Advantages

Term Structure Opens Up During QE Episodes

Comovement with Debt-to-GDP

Comovement with Debt-to-GDP ... Only at the Short End

Comovement with Debt-to-GDP ... Only at the Short End

What Accounts For Changes in $\chi_t^{(j)}$?

Asset Pricing Model For The Funding Spread

▶ Let $\xi_{t,t+1}$ be the pricing kernel for corporate bonds satisfying the dynamic recursion:

$$\tilde{q}_t^{(j)} = \mathbb{E}_t \left[\xi_{t,t+1} \tilde{q}_{t+1}^{(j-1)} \right], \quad j \ge 1, \quad \tilde{q}_t^{(0)} = 1$$

Let $\Omega_{t,t+1}^{(j-1)}$ be the non-pecuniary component required to price j-maturity treasuries:

$$q_t^{(j)} = \mathbb{E}_t \left[\xi_{t,t+1} \Omega_{t,t+1}^{(j-1)} q_{t+1}^{(j-1)} \right], \quad j \ge 1, \quad q_t^{(0)} = 1$$

- \blacktriangleright Exponential Affine Model of $\xi_{t,t+1}$ and $\Omega_{t,t+1}^{(j)}$ with a state space $X_t := [\widetilde{x}_t, b_t, x_t]$:
 - $-\widetilde{x}_t = \text{Principal components spanning the corporate yield curves},$
 - b_t = Principal components of the Treasury's promised cash-flow matrix relative to GDP
 - $-x_t = \text{Residualised principal components of the Treasury yield curves}$

Treasury Risk Factors Explain a Lot of The Variance in The Spread

Takeaways

- 1. Tax advantages and embedded options have been misinterpreted as funding advantage
- 2. It looks like risk pricing matters ... even for the US funding spread.

