
Online Appendix: Krusell and Smith (1998) Model

Zhouzhou Gu∗, Mathieu Laurière†, Sebastian Merkel‡, Jonathan Payne§¶

August 15, 2023

1 Introduction
The main paper Gu et al. (2023) describes how to use deep learning to solve a generic class
of continuous time, heterogeneous agent models. This supplementary appendix focuses on
the Krusell and Smith (1998) model, which is a special case that is particularly important
to the macroeconomics literature. We start by setting up “master equations” in detail for
the model. We then represent the numerical results from the paper.

2 Model

2.1 Environment

Setting: The model is in continuous time with infinite horizon. There is a perishable con-
sumption good and a durable capital stock. The economy contains a unit continuum of
households and a representative firm.

Production: The representative firm controls the production technology, which produces
consumption goods according to the production function:

Yt = eztKα
t L

1−α
t

where Kt is the capital hired at time t, Lt is the labour hired at time t, and zt is aggregate
∗Princeton, Department of Economics. Email: zg3990@princeton.edu
†NYU Shanghai, NYU-ECNU Institute of Mathematical Sciences. Email: mathieu.lauriere@nyu.edu
‡University of Exeter, Department of Economics. Email: s.merkel@exeter.ac.uk
§Princeton, Department of Economics. Email: jepayne@princeton.edu
¶We would like to thank Adam Rebei for outstanding research assistance throughout this project. We

are also very grateful to the comments and discussion from Goutham Gopalakrishna and Yucheng Yang.

1

productivity, which evolves according to:

dzt = η(z̄ − zt)dt+ σdB0
t , (2.1)

with lower and upper reflecting boundaries at {zmin, zmax} and where B0
t denotes an ag-

gregate Brownian motion process. We let F0
t denote the filtration generated by B0

t .

Households: Each household i ∈ [0, 1] has discount rate ρ and gets flow utility u(cit) =
(cit)1−γ/(1 − γ) from consuming cit consumption goods at time t. Households have an
idiosyncratic labor endowment nit ∈ {n1, n2}, where n1 < n2 so n1 is interpreted as unem-
ployment and n2 is interpreted as employment. Labor endowments switch idiosyncratically
between n1 and n2 at Poisson rate λ(nit).

Assets, markets, and financial frictions: Each period, there are competitive markets for
goods, capital rental, and labor. We use goods as the numeraire. We let rt denote the
rental rate on capital, wt denote the wage rate on labor, and qt = [rt, wt] denote the price
vector. Asset markets are incomplete so households cannot insure their idiosyncratic labor
shocks. Instead, households can trade claims to the aggregate capital stock in a competitive
asset market.

The original Krusell and Smith (1998) model imposes the “borrowing constraint” that
each agent’s net asset position, ait, must satisfy ait ≥ a, where a is an exogenous “borrowing
limit”. This generates an inequality boundary constraint and mass point, as discussed in
Achdou et al. (2022). However, this causes difficulties for the neural network. So, to make
the problem more tractable, we instead follow Brzoza-Brzezina et al. (2015) and introduce
a penalty function ψ at the left boundary, replacing the agent flow utility by:

U(at, ct) = u(ct) + 1at≤aψ(at)

The penalty function we use here is the quadratic: ψ(a) = − 1
2κ(a−a)2 where κ is a positive

constant.

2.2 Equilibrium

Household problem: Each household has two idiosyncratic states: their net-worth ait and
their labor endowment nit. The evolution of xit = [ait, nit], follows:

dxit = d

ait
nit

 =

s(cit, ait, nit, rt, wt)
0

 dt+

 0

ňit − nit

 dJ it (2.2)

2

where ňit is the complement of nit, J it is a Poisson process with arrival rate λ(nit), and the
agent’s saving function is given by:

s(c, a, n, r, w) = wn+ ra− c.

Where convenient (with abuse of notation) we write the saving function using the condensed
notation s(c, x, q).

Each agent, i, has a belief about the stochastic price process q̃ = {q̃t : t ≥ 0} adapted to
F0
t . Given their belief, agent i chooses their consumption process, ci = {cit : t ≥ 0} ∈ C(x, q̃),

to solve:

V (xi0, z0) = max
ci

E0

[∫ ∞
0

e−ρt
(
u(cit) + 1at≤aψ(at)

)
dt

]
(2.3)

s.t. (2.1), (2.2),

where C(x, q̃) is the set of admissible controls.

Firm problem: Firm optimization implies the following first order conditions for firm demand
for renting capital and labor:

rt = ∂KF (Kt, L)− δ, wt = ∂LF (Kt, L), (2.4)

Distributions: The incomplete markets mean that idiosyncratic shocks potentially generate
a non-degenerate cross sectional distribution of agent states. We let Gt = L(xit|F0

t) and gt
denote the population distribution and density across xit at time t, for a given history F0

t .

Equilibrium: Given an initial density g0, an equilibrium for this economy consists of a
collection of F0

t -adapted stochastic processes, {cit, nit, gt, qt, zt,Kt : t ≥ 0, i ∈ I}, that satisfy
the following conditions: (i) each household’s control process cit solves problem (2.3) given
their belief that the price process is q̃, (ii) firm demand for capital and labor satisfy the first
order conditions (2.4), (iii) markets clear:

Kt =
∑

j∈{1,2}

∫ ∞
a

agt(a, yj)da, L =
∑

j∈{1,2}

∫ ∞
a

njgt(a, yj)da,

and (iv) agent beliefs about the price process are consistent with the optimal behaviour of
other agents in the sense that q̃ = q.

2.3 Recursive Characterization of Equilibrium

States: We assume that there exists an equilibrium that is recursive in the aggregate state
variables: {z, g}. Observe that we can express the price vector q explicitly in terms of {z, g}

3

by combining the firm optimization conditions and the market clearing conditions:

q =

rt
wt

 =

ezt∂KF
(∑

j∈{1,2}
∫∞
a
agt(a, nj)da, L

)
− δ

ezt∂LF
(∑

j∈{1,2}
∫∞
a
agt(a, nj)da, L

)
 =: Q(z, g) (2.5)

A belief about the evolution of the distribution, dgt(x) = µ̃g(zt, gt)dt implies a belief about
the evolution of prices through q = Q(zt, gt) so beliefs about the price process can be char-
acterized by beliefs about the evolution of the distribution.

Hamilton Jacobi Bellman Equation (HJBE): Given their beliefs, for each x = [a, n], each
household chooses c to solve the HJBE:

0 = max
c∈C(x,z,g)

{
− ρV (x, z, g) + u(c) + 1a≤aψ(a)

+ ∂aV (x, z, g)s(c, x,Q(z, g)) + λ(n)(V (x̃, z, g)− V (x, z, g))

+ ∂zV (x, z, g)η(z̄ − zt) + 1
2σ

2∂zzV (x, z, g)

+
∫
X
µ̃g(zt, gt)

∂V

∂g
(x, z, g)(y)dy

}
where V (x, z, g) is the value function of the household, x̃ = [a, ñ] is household state after
the change from n to ñ, and ∂V/∂g is the Frechet derivative of V with respect to the distri-
bution.1 From the HJBE, the optimal consumption c∗ can be computed for every (x, z, g),
which allows a representative player to react optimally to any population distribution. The
optimal control, c∗, is characterised by the first order condition:

∂aV (x, z, g) = u′(c∗(x, z, g)).

Kolmogorov Forward Equation (KFE): Denote the recursive equilibrium optimal control
of the individual households by c∗(xt, zt, gt; µ̃g) for belief µ̃g. Then, for a given z path,
the evolution of the distribution under the optimal control c∗ can be characterized by the
Kolmogorov Forward Equation (KFE):2

dgt(x) = µg(c∗(xt, zt, gt; µ̃g), xt, zt, gt)dt, where

µg(c∗t , xt, zt, gt) := − ∂a[s(c∗t , xt, Q(zt, gt))gt(x)]− λ(n)g(x) + λñg(x̃)

Under this recursive characterization, the belief consistency condition becomes that µg = µ̃g.
1There are technical difficulties with defining the “distributional” derivatives for mean field games, as

discussed in Cardaliaguet et al. (2015). However, we do not engage with these difficulties because in all
numerical applications we are going to discretize the population density.

2Observe that there is no noise in the KFE because dB0
t does not directly impact the evolution of

idiosyncratic states.

4

Master Equation: We follow the approach of Lions (2011) and characterize the equilibrium
in one PDE, which is often referred to as the “master equation” of the “mean-field-game”.
Conceptually, the master equation is derived by imposing belief consistency and substituting
the equilibrium KFE into the HJBE. In equilibrium, the V (x, z, g) solves the following PDE:

0 = (LV)(x, z, g) := (LhV)(x, z, g) + (LgV)(x, z, g) (2.6)

where the operators Lh and Lg are defined by:

(LhV)(x, z, g) := − ρV (x, z, g) + u(c∗(x, z, g)) + 1a≤aψ(a)

+ ∂aV (x, z, g)s(c∗(x, z, g), x,Q(z, g)) + λ(n)(V (x̃, z, g)− V (x, z, g))

+ ∂ZV (x, z, g)η(z − z) + 1
2σ

2∂ZZV (x, z, g)

(LgV)(x, Z, g) :=
∫ ∞
a

∂b
∂V

∂g
(x, z, g)(b)× s (x, c∗(x, Z, g), Q(z, g)) g(b, n)db

+
∫ ∞
a

∂V

∂g
(x, z, g)(b)× (λ(ñ)g(b, ñ)− λ(n)g(b, n)) db

where c∗ satisfies (2.3) and Q(z, g) satisfies (3.1). In this notation, Lh reflects the optimiza-
tion problem of the household and Lg reflects how the evolution of the distribution affects
the household value.

Intuitively, V (x, z, g) can be interpreted as the optimal value of a representative player
who starts at state x, with aggregate shock equal to z, and who faces a population that
starts at the distribution g and then plays according to the Nash equilibrium control c. We
refer to Cardaliaguet et al. (2015); Bensoussan et al. (2015) for more details. The goal of
this paper is use deep learning techniques to find numerical solutions to equation (2.6). The
challenge is that the master equation contains an infinite dimensional derivative with respect
to the distribution g. We need to work with numerical approximations of the distribution
and solution methods that can handle high dimensions.

3 Solution Approach
In this section, we outline how to apply the “Deep Galerkin” approach to solving the master
equation (2.6). The first part of this approach is to find a finite dimensional approxima-
tion to the distribution so we can develop a finite, but high, dimensional approximation to
the master equation. The second part is to approximate the solution to the finite dimen-
sional master equation using a neural network. Finally, we use “deep-learning” to solve the
approximate master equation.

5

3.1 Finite Dimensional Master Equation

In the main paper, we discuss different ways of approximating the distribution. Here, we
only consider approximating the economy by an environment with a large, finite number
of agents I < ∞. In this case, the density, gt, is replaced by the individual states of the I
agents, which we denote by ĝt:

ĝt := {xit : i ≤ I}.

The market clearing conditions now become (with some abuse of notation) qt = Q̂(zt, ĝt)
where:

q =

rt
wt

 =

ezt∂KF (
∑
i ai, L)− δ

ezt∂LF (
∑
i ai, L)

 =: Q̂(z, g) (3.1)

However, to maintain the price taking assumption in the finite agent model, we impose that
agent i behaves as if their individual actions do not influence prices. Formally, this means
that agent i perceives the pricing function to be:

qt = Q̂(zt, ĝ−it)

where ĝ−it = {xjt ∈ I−i} is the position of the other agents I−i := {j ≤ I : j 6= i}.
Ultimately, this will ensure that the neural network trains the policies rules as if the agents
believe that their assets do not influence the market prices. Aside from this change to the
belief process, the optimization problem for household remains the same.

Let c∗(xi, z, ĝ) denote the equilibrium optimal control . Let V (xi, z, ĝ) denote the value
function for the master equation in the economy with I price taking agents. Then V (xi, z, ĝ)
solves (L̂V)(xi, z, ĝ) = 0 subject to the boundary conditions, where the master equation
operator is:

(L̂V) = (L̂hV) + (L̂gV), where

(L̂hV)(xi, z, ĝ) := (LhV)(xi, z, ĝ)

(L̂gV)(xi, z, ĝ) =
∑
j 6=i

∂V

∂xj
(xi, z, ĝ)s(c∗(xj , z, ĝ), xj , z, Q̂(z, ĝ−j))

+
∑
j 6=i

λ(xj)
(
V (xi, z, (x̃j , ĝ−ij)})− V (xi, z, ĝ−i)

)
,

The operator for the household optimization problem, L̂h, is the same as in the general
problem but with the distribution replaced by the finite collection of agents for the calcu-
lating the market clearing conditions (and some abuse of notation). The operator for the
impact of distributional changes on the household, L̂g, become finite dimensional because

6

the economy only needs to track the evolution of a finite number of agents.

3.2 Neural Network Approximations

Section 3.1 derived finite approximations to the density, ĝ, and the master equation operator
L̂. However, the resulting master equations are high dimensional and so cannot be solved by
traditional techniques. Instead, we approximate the solution to the master equation using
a neural network and deploy tools from the “deep learning” literature to “train” the neural
network to solve the approximate master equation.

A neural network is a type of parametric functional approximation that is built by
composing affine and non-linear functions in a chain or “network” structure (see Goodfellow
et al. (2016) for a detailed discussion). We let X̂ := {x, z, ĝ} denote the collection of inputs
into the approximate value function. We denote the neural network approximation to the
value function by V (X̂) ≈ V̂ (X̂; θ), where θ are the parameters in the neural network
approximation that depend upon the form of the approximation. There are many types of
neural network approximations. The simplest form is a “feedforward” or “deep feedforward”
neural network which is defined by:

h(1) = φ(1)(W (1)X̂ + b(1)) . . .Hidden layer 1

h(2) = φ(2)(W (2)h(1) + b(2)) . . .Hidden layer 2
...

h(H) = φ(H)(W (H)h(H−1) + b(H)) . . .Hidden layer H

o = W (H+1)h(H) + b(H+1) . . .Output layer

V̂ = φH+1(o) . . .Output

(3.2)

where the {h(i)}i≤H are vectors referred to as “hidden layers” in the neural network,
{W (i)}i≤(H+1) are matrices referred to as the “weights” in each layer, {b(i)}i≤(H+1) are
vectors referred to as the “biases” in each layer, {φ(i)}i≤(H+1) are non-linear functions ap-
plied element-wise to each affine transformation and referred to as “activation functions”
for each layer. The length of hidden layer, h(i), is referred to as the number of neurons in
hidden layer i. The total collection of parameters is denoted by θ = {W (i), b(i)}i≤(H+1). The
goal of deep learning is to train the parameters, θ, to make V̂ (X̂; θ) a close approximation
to V (X̂).

The neural network defined in (3.2) is called a “feedforward” because hidden layer i
cannot depend on hidden layers j > i. This is in contrast to a “recursive” neural networks
where any hidden layer can be a function of any other hidden layer. It is called “fully
connected” if all the entries in the weight matrices can be non-zero so each layer can use
all the entries in the previous layer. In this paper, we will consider a fully connected
“feedforward” network to be the default network. This is because these networks are the

7

quickest to train and so we typically start by trying out this approach. However, there are
applications where we find that more complicated neural network formulations are useful.
In particular, we find that the type of recursive neural network suggested by the “Deep
Galerkin” approach in Sirignano and Spiliopoulos (2018) is helpful for finite state space
approximations.

3.3 Solution Algorithm

We train the neural network to learn parameters θ that minimize the error in the master
equation and boundary conditions. We describe the key steps in in Algorithm 1. Essen-
tially, the algorithm generates random points in the discretized states space {x, z, ĝ}, then
calculates the error in the master equation on those points, and updates the parameters to
decrease the error in the master equation. In the deep learning literature, this approach is
sometimes referred to as “unsupervised” learning (e.g. Azinovic et al. (2022)) because we
do not have direct observations of the value function, V (x, z, ĝ), and instead have to learn
the value function indirectly via the master equation.

Algorithm 1: Solution Algorithm

1. Approximate the value function by a neural network: V (x, z, ĝ) ≈ V̂ (x, z, ĝ; θ), where
θ are the neural network parameters for the value function

2. Make initial parameter guess θ0.

3. At iteration n with guess θn:

(a) Generate M sample points, S = {(xm, zm, ĝm)}m≤M for evaluating the master
equation error.

(b) Calculate the average error in the master equation for the sample:

E(θn, S) := 1
M

∑
m≤M

|L̂(xm, zm, ĝm)|2

where the derivatives in the differential operator are calculated using automatic
differentiation.

(c) Update the the parameters using “deep learning” toolkit. We typically use a
“stochastic gradient descent” style method: at each point:

θn+1 = θn − αnDθE(θn, Sn)

where αn is the “learning rate” and DθE is the vector differential operator.
(d) Repeat until E(θn, Sn) ≤ ε where ε is a precision threshold.

8

4 Implementation
We solve the model for the parameters outlined in table 2. The precise details of the
algorithm, sampling, and neural network specification are outlined in the main paper Gu
et al. (2023).

The error in the master equation is shown in Table 1 below. We don’t have a clear
benchmark for Krusell-Smith model because there is no existing technique that provides an
accurate solution to the model with aggregate shocks. However, we can compare to widely
used approximation techniques in the literature. In particuar, we compare the approach sug-
gested by Fernández-Villaverde et al. (2018), which uses a neural network to approximate
a statistical law of motion rather than developing the fully global solution. We compare
to Fernández-Villaverde et al. (2018) by computing sample paths from both solution ap-
proaches. Essentially, we draw a series of productivity shocks from the Ornstein-Uhlenbeck
process: dzt = η(z̄ − z)dt+ σdWt and then evolve the population distribution.

Master equation loss

Finite Agent NN 3.037× 10−5

Table 1: Neural Nets’ results for solving Master Equations with aggregate shocks.

Figure 1 shows the comparison between our neural network solution and Fernández-
Villaverde et al. (2018) for a particular path of productivity shocks. The upper-left panel
shows the draw from the Ornstein-Uhlenbeck process: dzt = η(z̄ − z)dt+ σdBt. The upper
left compares the evolution of capital stock. The middle plots compares the evolution of
prices. The bottom plots compare the evolution of the population. As can be seen in figure
1, we get a similar path for aggregate capital stock, interest rates, wage rates, and the
population distribution.

In figure 2, we generate multiple random paths for TFP, zt, and show the evolution of our
Neural Network solution and solution in Fernández-Villaverde et al. (2018) in a “fan chart”
that displays percentiles for the evolution of the population. In particular, we generate 1,000
TFP paths starting from z0 = 0 and calculate the corresponding aggregate capital evolution
paths. We collect capital at different time t, sort to get the pth-quantile and plot the time
series of the quantiles.

9

0 2 4 6 8 10

t

-3

-2

-1

0

1

2

3
"Z(t) %

0 2 4 6 8 10

t

-0.5

0

0.5

1

1.5
(K(t)!Ksss)=Ksss %

NN;FA

FV

0 2 4 6 8 10

t

-30

-20

-10

0

10

20
(r(t)! rsss)=rsss %

NN;FA

FV

0 2 4 6 8 10

t

-2

-1

0

1

2

3
(w(t)! wsss)=wsss %

NN;FA

FV

0 5 10 15 20

a

0

0.02

0.04

0.06

0.08
Population Distribution (t = 5)

NN; FA : n1

NN; FA : n2

FD : n1

FD : n2

0 5 10 15 20

a

0

0.02

0.04

0.06

0.08
Population Distribution (t = 10)

NN; FA : n1

NN; FA : n2

FD : n1

FD : n2

Figure 1: Impulse response functions for Krusell-Smith Model. The top left plot is the TFP
shock path, the top right panel is the aggregate relative capital change, the middle left panel
plots the relative average consumption change, and the middle right panel plots the relative
capital return change. The bottom left is relative wage change, and the bottom right is
the relative wealth change at different quantiles. NN, FA referes to the finite agent neural
network and FV refers to the result generated from Fernández-Villaverde et al. (2018).
Subscript sss refers to the stochastic steady state at Z = 0.

10

0 2 4 6 8

t

-1.5

-1

-0.5

0

0.5

1

1.5
FV : (K(t)!Ksss)=Ksss %

0 2 4 6 8

t

-1.5

-1

-0.5

0

0.5

1

1.5
NN, FA: (K(t)!Ksss)=Ksss %

0 2 4 6 8

t

-1.5

-1

-0.5

0

0.5

1

1.5
"Z %

0 2 4 6 8

t

-1.5

-1

-0.5

0

0.5

1

1.5
(K(t)!Ksss)=Ksss %

Figure 2: Forcasted aggregate capital dynamics starting from the stochastic steady state
(sss) for the Krusell-Smith Model. The top left plot is the fan chart for the TFP shock
path, generated from OU process with initial condition Z0 = 0. The bottom left panel and
right panel are fan charts (capital quantile) of corresponding responses. The top right panel
is the time series plot for relative change in aggregate capital at quantile 10%, 30%, 50%,
70%, 90% (from the lowest to the highest), in which the blue solid lines are generated by
neural network solution and the red dashed lines are generated by Fernández-Villaverde et al.
(2018). NN, FA referes to the finite agent technique, and FV refers to Fernández-Villaverde
et al. (2018)’s technique.

11

References
Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L., and Moll, B. (2022). Income and wealth
distribution in macroeconomics: A continuous-time approach. The Review of Economic
Studies, 89(1):45–86.

Azinovic, M., Gaegauf, L., and Scheidegger, S. (2022). Deep equilibrium nets. International
Economic Review, 63(4):1471–1525.

Bensoussan, A., Frehse, J., and Yam, S. C. P. (2015). The master equation in mean field
theory. Journal de Mathématiques Pures et Appliquées, 103(6):1441–1474.

Brzoza-Brzezina, M., Kolasa, M., and Makarski, K. (2015). A penalty function approach to
occasionally binding credit constraints. Economic Modelling, 51:315–327.

Cardaliaguet, P., Delarue, F., Lasry, J.-M., and Lions, P.-L. (2015). The master equation
and the convergence problem in mean field games. arXiv.

Fernández-Villaverde, J., Hurtado, S., and Nuño, G. (2018). Financial Frictions and the
Wealth Distribution. Working Paper, pages 1–51.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Gu, Z., Laurière, M., Merkel, S., and Payne, J. (2023). Deep learning solutions to master
equations for continuous time heterogeneous agent macroeconomic models.

Krusell, P. and Smith, A. A. (1998). Income and Wealth Heterogeneity in the Macroecon-
omy. Journal of Political Economy, 106(5):867–896.

Lions, P.-L. (2007-2011). Lectures at College de France.

Sirignano, J. and Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving
partial differential equations. Journal of computational physics, 375:1339–1364.

12

A Krusell-Smith Model

A.1 Parameters for Krusell-Smith Model

Parameter Symbol Value

Capital share α 1/3

Depreciation δ 0.1

Risk aversion γ 2.1

Discount rate ρ 0.05

Mean TFP Z 0.00

Reversion rate η 0.50

Volatility of TFP σ 0.01

Transition rate (1 to 2) λ1 0.4

Transition rate (2 to 1) λ2 0.4

Low labor productivity n1 0.3

High labor productivity n2 1 + λ2/λ1(1− n1)

Borrowing constraint a 10−6

Maximum of asset a 20.0

Penalty Function ψ(a) − 1
2κ(a− alb)2

Penalty parameters alb 1.0

Penalty parameters κ 3.0

Drift in O-U Process η 0.5

Volatility in O-U Process σ 0.01

Maximum TFP Zmax 0.04

Minimum TFP Zmin −0.04

Table 2: Parameters.

13

B Additional Plots

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Epoches

10!6

10!4

10!2

100

102

104

106

108

R
es

id
u
al

s

Training Loss: Aiyagari Model

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Epoches

10!5

10!4

10!3

10!2

10!1

100

101

102

R
es

id
u
a
ls

Training Loss: Krusell Smith Model

Figure 3: Training Loss vs Interation Plots (Finite Agent Method)

14

	Introduction
	Model
	Environment
	Equilibrium
	Recursive Characterization of Equilibrium

	Solution Approach
	Finite Dimensional Master Equation
	Neural Network Approximations
	Solution Algorithm

	Implementation
	Krusell-Smith Model
	Parameters for Krusell-Smith Model

	Additional Plots

