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Abstract

We propose and compare new global solution algorithms for continuous time
heterogeneous agent economies with aggregate shocks. First, we approximate
the agent distribution so that equilibrium in the economy can be characterized
by a high, but finite, dimensional non-linear partial differential equation. We
consider different approximations: discretizing the number of agents, discretiz-
ing the agent state variables, and projecting the distribution onto a finite set of
basis functions. Second, we represent the value function using a neural network
and train it to solve the differential equation using deep learning tools. The
main advantage of this technique is that it allows us to find global solutions
to high dimensional, non-linear problems. We demonstrate our algorithm by
solving versions of important models in the macroeconomics and spatial liter-
atures (e.g. Krusell and Smith (1998), Khan and Thomas (2007), Bilal (2023),
Kaplan and Violante (2014)).
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1 Introduction

Macroeconomists have great interest in studying models with heterogeneous agents
and aggregate shocks. Recent work has characterized equilibria in these models recur-
sively in continuous time using “master equations” from the mean field game theory
literature. A major challenge with these recursive formulations is that the distri-
bution of agents states becomes an aggregate state variable and so the state space
becomes infinite dimensional. There have been attempts to resolve this issue by using
perturbations in the distribution space (e.g. Bilal (2023), Alvarez et al. (2023), Bhan-
dari et al. (2023)). In this paper we use tools from the deep learning literature to
characterize global solutions to the master equation. This necessitates constructing
a finite dimensional approximation to the cross-sectional distribution of agent states.
Most existing deep learning approaches are in discrete time and replace the agent
continuum by a finite collection of agents. We develop and compare the three main
approaches for approximating the distribution in continuous time: imposing a finite
number of agents, discretizing the state space, and projecting onto a collection of
finite basis functions. For each approximation, we show how to characterize general
equilibrium as a high but finite dimensional differential master equation and how
to customize deep learning techniques to compute global numerical solutions to the
differential equation.

We develop solution techniques for a class of continuous time dynamic, stochastic,
general equilibrium economic models with the following features. There is a large
collection of price-taking agents who face uninsurable idiosyncratic and aggregate
shocks. Given their belief about the evolution of aggregate state variables, agents
choose control processes to solve dynamic optimization problems. When making
their decisions, agents face financial frictions that constrain their behavior, which
potentially breaks “aggregation” results and makes the distribution of agent states an
aggregate state variable. Solving for the rational expectations equilibrium reduces to
solving a “master” partial differential equation (PDE) that summarizes both the agent
optimization behavior (from the Hamilton-Jacobi-Bellman equation (HJBE)) and the
evolution of the distribution (from the Kolmogorov Forward Equation (KFE)). A
canonical example of this type of environment is the continuous time version of the
Krusell and Smith (1998) model, which we (and many others) use to illustrate and

assess our solution approach.



Our solution approach approximates the infinite dimensional master equation by
a finite, but high, dimensional PDE and then uses deep learning to solve the high
dimensional equation. We consider three different approaches for reducing the dimen-
sion of the master equation: the finite-agent, discrete-state, and projection methods.
The finite agent method approximates the distribution by a large, finite number of
agents. The discrete state method approximates the distribution by discretizing the
agent state space so the density becomes a collection of masses at grid points. The
projection method approximates the distribution by a linear combination of finitely
many basis functions. Most deep learning macroeconomic papers are in discrete time
and have focused on the finite agent approximation. All of our distribution approx-
imations preserve the full non-linearity of the model, which is a key difference to
perturbation based approaches.

We solve the finite dimensional approximation to the master equation by adapt-
ing the Deep Galerkin Method (DGM) and the Physics Informed Neural Networks
(PINN) method developed in the applied mathematics and physics literatures. This
involves approximating the value function by a neural network and then using stochas-
tic gradient descent to train the neural network to minimise a loss function that
summarizes the average error in the master equation. We calculate average errors
by randomly sampling over points in the state space. We refer to our approach as
training Economic Model Informed Neural Networks (EMINNS).

Although our deep learning approach is relatively simple to describe at an ab-
stract level, there are many implementation details. A particularly important detail
is choosing how to sample the states on which we evaluate the master differential
equation error. This choice is less relevant for discrete time approaches where the
economy is simulated to calculate expectations and also for other continuous time
deep learning papers that don’t have high dimensional distributions as states. We
consider three approaches for sampling the distribution. The first is moment sampling
that draws selected moments of the distribution and then samples agent distributions
that satisfy the drawn moments. The second is mized steady state sampling that
samples random mixtures of steady state distributions at different fixed aggregate
states. The third is ergodic sampling that samples by regularly simulating the model
economy based on the current estimate of the model solution. We find that moment
sampling is most effective for the finite-agent approximation, a combination of mixed

steady state sampling and ergodic sampling is most effective for the discrete state



space approximation, and a combination of moment sampling and ergodic sampling
is most effective for the projection approach. Deep learning techniques are sometimes
referred to as “breaking the curse of dimensionality” but this is not really true in the
sense that we cannot train a neural network by showing it a dense set of distributions.
Instead, a key “art” to training a neural network is to sample from an intelligently
chosen subspace that helps the neural network to learn the equilibrium functional
relationships in an economically interesting part of the state space.

In Section 5, we illustrate our techniques by solving a continuous time version of
Krusell and Smith (1998) using all three of our methods. We take this model as a “test
case” because there are well established approximate solutions using traditional tech-
niques to which we can compare. We show that our methods generate solutions with
a low master equation error that produce very similar simulations to contemporary
approaches such as Fernandez-Villaverde et al. (2023). In addition, for the version
of the model without aggregate shocks (the Aiyagari (1994) model), we show that
we can match the finite difference solution to high accuracy and, for the finite-agent
approximation, solve for transition dynamics without a shooting algorithm.

Although all our methods are ultimately effective for solving the Krusell and Smith
(1998) model, we find they have different strengths and weaknesses. One point of
difference is how much information about the model solution is required for sampling.
We find that only the finite agent method can be solved without ergodic sampling,
which makes its solution more robust away from the ergodic mean. A second point of
difference is how large and complicated the neural network needs to be. The discrete
state space requires a fine grid (approximately 200 points) while the finite agent
method requires a moderate number of agents (approximately 40) and the projection
method only requires 5 basis functions. A third point of difference is the complication
of the law motion for the parameters approximating the distribution. For the finite
agent method, this is simply the law of motion for agent idiosyncratic states. However,
for the discrete state method it is the law of motion for the mass between grid points
and for the projection method it is the law of motion for projection coefficients, both
of which are hard to compute. How to balance these trade-offs depends upon how
the distribution interacts with agent decision making and the complexity of the KFE.

Ultimately, our conclusions are:

1. When only the mean of the distribution enters into the pricing equations, then

the finite agent method with moment sampling is robust and powerful.
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2. When many aspects of the distribution are important for prices and the KFE
does not involve complicated derivatives, then the discrete state method with
mixed steady state and ergodic sampling is most successful. However, with
complicated KFEs it is a difficult method.

3. When it is clear how to customize the projection approach to the economic

problem, then it can effectively solve the model with low dimensions.

In Section 6, we solve three additional models that have more complicated master
equations and illustrate the power of different methods: a spatial model (extending
Bilal (2023) to include capital mobility), a model with heterogeneous firms (similar to
a continuous time version of Khan and Thomas (2008)), and a liquid/illiquid account
business cycle model that can account for wealthy hand-to-mouth agents (similar to
Kaplan and Violante (2014)). We solve the firm model and liquid/illiquid account
models using a finite agent method and show that this technique copes well with the
additional non-linearity that comes with pricing firm equity or transaction costs. We
solve the spatial model using a discrete set of locations (since finite agent and pro-
jection approximations infeasible) and show this technique is effective when different

parts of the distribution affect different prices.

Literature Review: Our paper is part of the literature attempting to solve hetero-
geneous agent continuous time (HACT) general equilibrium economic models with
aggregate shocks. Many researchers have shown that it can be useful to cast eco-
nomic models in continuous time (e.g. Achdou et al. (2022a), Ahn et al. (2018),
Kaplan et al. (2018)). Recent papers (e.g. Bilal (2023)) have made progress by
characterizing equilibrium using the “master equation” approach developed in the
mathematics literature (see Lions (2011), Cardaliaguet et al. (2019)). However, the
continuous time literature has lacked a global solution technique for these models,
particularly when written recursively in master equation form. Instead, many of the
existing techniques in the literature focus on perturbation in the distribution and
other aggregate state variables. Our main contribution is to offer a global solution to
the master equation for HACT models with aggregate shocks.

Technically, our approach is part of a literature attempting to use deep learn-
ing to numerically characterize solutions to dynamic general equilibrium models with

heterogeneous agents and aggregate shocks, which in the mathematics literature are



mean-field games with common noise. There have been many papers attempting to
solve discrete time versions of these models (e.g. Azinovic et al. (2022), Han et al.
(2021), Maliar et al. (2021), Kahou et al. (2021), Bretscher et al. (2022), Germain
et al. (2022a), Azinovic and Zemlicka (2023)). We are focused on deep learning for
continuous time models, which has been the focus for the mathematics literature but
less so for the economics deep learning literature. For continuous time systems, there
are two broad approaches for using deep learning: (i) a “probabilistic” approach that
attempts to solve a system of stochastic differential equations and (ii) an “analytic”
approach that attempts solve a system of partial differential equations. Papers us-
ing the former approach follow Han et al. (2018) and train the neural network to
learn optimal controls across simulations of a discrete time approximation to the
system of stochastic differential equations (e.g Fouque and Zhang (2020), Min and
Hu (2021), Carmona and Lauriere (2022), Germain et al. (2022b), Huang (2023b),
Huang (2023a), Huang and Yu (2024)). This approach has many similarities to the
discrete time deep learning methods in economics, which also use simulations to train
the optimal control problem. Our paper follows the latter (i.e., analytic) approach,
which involves minimizing the loss in the differential equation across randomly sam-
pled points. We view this as the “true” continuous time approach in the sense that
it does not involve discretizing the time dimension in order to train the neural net-
work. To implement the analytic solution approach, we build on the DGM and PINN
methods developed by Sirignano and Spiliopoulos (2018), Raissi et al. (2017), and Li
et al. (2022) to solve problems in the physics and applied mathematics literatures.
The key difficulty we resolve is that none of the existing deep learning papers are
directly applicable to solving our master equations. Relative to the discrete-time and
probabilistic approaches, we need to minimize loss in a differential equation, which
requires developing new sampling approaches and resolving how to evaluate deriva-
tives (rather than simulating to approximate expectations). Relative to the DGM
and PINN literatures, we have to work out how to handle models with forward look-
ing optimizing agents and market clearing conditions. Some papers in the mean-field
literature have attempted to address some of these issues (e.g. Al-Aradi et al. (2022);
Carmona and Lauriere (2021)) but they do not handle aggregate shocks (see e.g. Hu
and Lauriere (2022) for a recent survey).

The major challenge with using the analytic approach to solve master equations

with a general state space is that we need to develop and sample from a finite di-



mensional representation of the distribution. There are some existing papers in the
mean field literature that work with low dimensional discrete state spaces (e.g. Per-
rin et al. (2022), Cohen et al. (2024)) and some papers in the economics literature
that solve continuous time models without complicated distributions or with one-
dimensional distribution approximations (e.g. Duarte et al. (2024), Gopalakrishna
(2021), Fernandez-Villaverde et al. (2023), Sauzet (2021), Achdou et al. (2022b),
Barnett et al. (2023)). By contrast, we develop and compare a range of finite di-
mensional approximations: reducing to finite agents, discretizing the state space, and
projection onto a finite set of basis functions. An important contribution of our paper
is to systematically explore the full set of distributional approximations and develop
sampling approaches that are customized to those distributional approximations
This paper is organised as follows. Section 2 describes the general economic envi-
ronment that we will be studying and derives the master equation. Section 3 describes
the different finite dimensional approximations to the master equation. Section 4 de-
scribes the solution approach. Section 5 applies our algorithm to a continuous time
version of Krusell and Smith (1998). Section 6 provides additional examples. Section

7 concludes with practical lessons.

2 Economic Model

In this section, we outline the class of economic models for which our techniques are
appropriate. At a high level, in economics terminology, we are solving continuous
time, general equilibrium models with a distribution of optimizing agents who face
idiosyncratic and aggregate shocks. In maths terminology, we are solving mean field

games with common noise.

2.1 Environment

Setting: The model is in continuous time with infinite horizon. There is an exogenous

one-dimensional! aggregate state variable, z;, which evolves according to:

dzi = po(z)dt + 0.(2)dBY,  z given, (2.1)

IFor ease of exposition, we restrict attention to models with one-dimensional aggregate shocks.
The method is no different for the case with multi-dimensional aggregate shocks.



where BY denotes a common Brownian motion process with filtration F7.
Agent Problem: The economy is populated by a continuum of agents, indexed by
i € I = [0,1]. Each agent i has an idiosyncratic state vector, ' € X C R that

follows:
dﬂ?i = Mw(q@ xi7 Zt, qt>dt + O':E(Ci, I’i, 2, Qt)dBZ + gz(Ci, :E;L‘H Zt, Qt)dJZ; Z‘B given (22>

where ¢! is a one-dimensional control variable chosen by the agent, ¢; € Q is a
collection of aggregate prices in the economy that will be determined endogenously in
equilibrium, B} denotes an Np-dimensional idiosyncratic Brownian motion process, J;
denotes a 1-dimensional idiosyncratic Poisson jump process, ji,(+) is N,~dimensional,
0.(+) is an N, x Np—dimensional matrix, and ¢,(-) is V,-dimensional.? We let \(z, 2)
denote the rate at which Poisson jump shocks arrive given idiosyncratic state x and
aggregate state z. We let F; denote the filtration generated by Bi, J!, and BY.

Each agent i has a belief about the stochastic price process ¢ = {¢ : t > 0}
adapted to FP. Given their belief, agent i chooses their control process, ¢! = {c! : t >
0} adapted to F}, to solve:

V(zh, 20) = Icril?é{Eo {/OOO e Plu(c, z, qp)dt| s.t. (2.1), (2.2), (2.3)
where p > 0 is a discount parameter, u(ci, z;, g;) is the flow benefit the agent gets and
C ={c € C(x,2,q) : t > 0} is the set of admissible controls, where C(z, z, q) denotes
the set of possible actions for a player whose current state is x, when the aggregate
state is z and the prices are ¢g. This constraint set incorporates any “financial frictions”
that restrict agent choices. A classic example in economics is that x! represents agent
wealth and the control must keep xi > x. We assume that u is increasing and concave
in its first argument.

Distributions and Markets: Let D(xi|F;) be the population distribution across !
at time ¢, for a given history Fp. We assume that D(zi|F?) has a density g, where for
continuous components of z the density is with respect to the Lebesgue measure and
for discrete components of x the density is with respect to the counting measure. This
means we restrict attention to distributions without mass points in the continuous

variables, which potentially requires us to “smooth” constraints in the model, as we

2We consider a one-dimensional control and J{ process for notational simplicity. We do not
consider the case where dBY directly impacts the evolution of idiosyncratic states.



discuss in Section 2.2. We further assume that ¢g; € G, where G is a subspace of the
set of square integrable functions defined on X.
We assume that the economy contains a collection of markets with price vector ¢,

and market clearing conditions that give ¢, explicitly in terms of z; and g;:

@ = Qz, 1), Yt >0, (2.4)

We assume that markets are incomplete so that agents cannot trade claims directly
(or indirectly) on their idiosyncratic shocks d B; and dJ}. This means that the idiosyn-
cratic shocks generate a non-degenerate cross sectional distribution of agent states.
Equilibrium: Given an initial density gg, an equilibrium for this economy consists
of a collection of FP—adapted stochastic processes, {g, q,z}, and F;—adapted stochas-
tic processes, c, for each i € I, that satisfy the following conditions: (i) each agent’s
control process ¢’ solves problem (2.3) given their belief that the price process is g, (ii)
the equilibrium prices q satisfy market clearing condition (2.4), and (iii) agent beliefs
about the price process are consistent with the optimal behaviour of other agents in

the sense that q = q.

2.2 Recursive Representation of Equilibrium

We assume that there exists an equilibrium that is recursive in the aggregate state
variables: (z,g) € Z x G. In this case, beliefs about the price process can be charac-
terized by beliefs about the evolution of the distribution dg;(z) = fi,(z, 2, g;)dt since
the price vector ¢ can be expressed explicitly in terms of (z,g). We assume that in
this equilibrium, the value function of the agent takes the form V : X x Z x G — R,
(x,z,9) — V(x,z,¢g), where V is twice differentiable with respect to = and z and
Frechet differentiable with respect to g.

Hamilton Jacobi Bellman Equation (HJBE): In principle, the constraint ¢ € C(x%, 2, ¢;)

restricts x to a subspace X C X and imposes the constraint:
U(c,z,Q(z,9); V,D,V,D3V) >0, x € X°. (2.5)

However, to help the neural network train the value function, throughout we re-

place the hard constraint on the set of admissible controls by a flow utility penalty



(e, x,Q(z,g)) that is larger the “more” that (2.5) is violated (and where we have
left the dependence on the value function implicit). We provide explicit examples of
1 in our applications in Section 5 and Section 6. Given a belief about the evolution
of the distribution, fis, the agent’s value function, V', and optimal choice of control,
¢, jointly solve the HJBE:

0= max { — pV(ﬂf, Z;g) + u(c,z, Q(Z7g)) + @ZJ(Ca%Q(Z»g))

ceC(z,2,9)

(L5904 Lo+ LV (5, 2,0) (26)

where the operators are defined as:

Nz
[:;;Qv(x7 z,9) = Z 8€C]’V(‘r7 % 9 (¢, 2,2, Q(2, 9))

J=1

+ a$.7'v$kv(x’279)E$7jk(cax7Z7Q(zag))

1

™Mz

1
2
J

+ )\([L’, Z) (V([L’ + §x(C, Ty 2y Q(Z7 g))? 2 g) - V(]J, 2 g))
LoV (2,2,9) = 0V (w2, 0)a(2) + 50V (7, 2,) (02(2)

CPoV(x, 2, g) = /X DV (@, 2, 9)(y)iig(y, 2, 9)dy

where D,V (z,2,9) : X - R, y — D,V(z,2,9)(y) is the kernel of the Riesz repre-
sentation of the Frechet derivative of V' with respect to the distribution at (z, z, g),
S.(-) == 0x(-) (02(-))", a; denotes element j of vector a and Aj; denotes element
(7, k) of matrix A. The recursive optimal control, ¢*(z, z, g), is characterised by the

first order condition:

0= 0. (u(c,2,Q(z,9)) + ¥(c; 2, Q(z,9)) + L5V (x,2,9))

c:C* (xVZ?g)

Kolmogorov Forward Equation (KFE): Denote the recursive equilibrium optimal con-
trol of the individual agents by c¢*(z, 2, g; fi;). Compared with the above notation,
we add fi, to stress the fact that the belief of the agent may differ from the true f,.
In Appendix A, we show that, for a given z path, the evolution of the distribution

under the optimal control can be characterized by the Kolmogorov Forward Equation
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(KFE):34

dgi(x) = pg(x, 2z, g1; ¢, fig)dt, where (2.7)
Ny
MQ('T?Zag;C*aﬂg) = 28117] [:U@J(C*(xaZag;[j’g)ﬂx72?@(z7g))g(x>]
j=1
1 e
+3 D Oy [Bage(c (2, 2,9 17), 2, 2,Q(2, 9)) g ()]
k=1

+ Mg =<2, 2,95 )| = Dal(, 2, g3 fig)| — 9())

where ¢ is defined so that X = 2—{(z, 2, ¢; fi,) is equivalent to X+¢(c* (X, 2, 9; fig), X, 2, Q(z, g)) =
x. Under this recursive characterization, the belief consistency condition becomes that

thg = flg-

Master Equation: We follow the approach of Lions (2011) and characterize the equi-
librium in one PDE, which is often referred to as the “master equation” of the “mean
field game”. This formulation is particularly convenient when the evolution of the
economy is subject to aggregate shocks and the evolution of the aggregate state vari-
ables cannot be determined deterministically. Conceptually, the master equation is
related to the HJBE (2.6) but it imposes the belief consistency by putting the equi-
librium KFE into the HIBE. Formally, the equilibrium value function V(z, z,g) is

the solution to the following “master equation”:

0=LV(zx,z9)

+ (LG EPDR L L, 4 LUV (2,2, 9) (2.8)

where all operators are as defined above. The mathematical challenge of working
with the master equation is that it contains an infinite dimensional variable, g, and
a derivative with respect to this variable. This poses a collection of mathematical

difficulties for the mean field game theory literature, which attempts to find condi-

30Observe that there is no noise term in the KFE because dBY does not directly impact the
evolution of idiosyncratic states.

4For notational convenience, we assume in equation (2.7) that all variables are continuous. The
same formula extends naturally to discrete variables if the integrals in the discrete dimensions are
interpreted as sums and all derivatives in that dimension are set to zero.
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tions under which the infinite dimensional master equation is well defined and has a
solution. We refer to Cardaliaguet et al. (2019); Bensoussan et al. (2015) for more
details. By contrast, we are focused on numerical approximation, which means that
we need to find a finite dimensional approximation to the distribution, convert the
master equation into a high, but finite, dimensional PDE, and develop techniques for
solving the PDE. The goal of our paper is use deep learning techniques to character-
ize such a finite dimensional numerical approximation without using a perturbation

approach.

2.3 Model Generality

Our model set up nests many canonical models in macroeconomics such as continuous
time versions of Krusell and Smith (1998) and Khan and Thomas (2008). However, we
have also made strong assumptions. First, we have assumed that the prices, ¢, can be
expressed explicitly in closed form as functions of the aggregate state variables (z, g),
in equation (2.4). Second, we have assumed that the aggregate Brownian motion
B° does not directly shock the evolution of idiosyncratic states. In Gopalakrishna
et al. (2024), some of the authors to this paper extend the methodology to resolve
the challenges of introducing portfolio choice and long-term assets with complicated
pricing. Finally, we have assumed that the distribution only enters the master equa-
tion through the pricing function. In Payne et al. (2024), some of the authors to this

paper extend the methodology to resolve these challenges.

3 Finite Dimensional Master Equation

In this section, we study finite dimensional approximations to the population distri-
bution g. Let ¢ € ® C RY be a finite dimensional parameter vector, which could
represent the collection of agents, the bins in a histogram, or the coefficients in a

projection. Let G be a mapping from parameters to distributions:

G PG oGP =3
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We look for an approximation to the value function of the form ViXxZxd— R,

(,2,9) — V(x, z, @) that satisfies an approximate master equation:

0= ﬁV(:B,z, Q)
= — V(2 2,0) + u(E(z,2,0), 2,Q(z,9) + V(@ (z,2,8),7,Q(2,¢))
F(LE@DQ L L L)V (2, 2, ),

where Q(z,¢) := Q(z, G(¢)) and ¢&* is defined to satisfy:

0= 0. (ulc, 2,Qz,9)) + ¥(c, 7, Q(2,9)) + LSV (2, 2,$)) (3.1)

c=t*(2,2,9)

The operators £59 and L. are the same as before. However, the operator £,, is
different because it depends upon the way that the distribution is approximated.
We characterize three distribution approximation approaches. The first approach
approximates the distribution with a finite collection of agents. The second approach
approximates the continuous state space by a finite collection of grid points. The
third approach projects the distribution onto a finite set of basis functions. This

summarized in Table 1 below. In the rest of the section, we show how G and ﬁg are
defined.

Finite Population  Discrete State Projection
Distribution approx. + v, Oz SN Pnibe, SN Pribn()
KFE approx. Evolution of other FEvolution of mass Evolution of pro-
agents’ states between discrete jection coefficients
states

Table 1: Comparison of Distribution Approximations

3.1 Finite Agent Approximation

Distribution approxzimation: In this approach, we restrict the model so that the econ-

omy contains a large but finite number of agents N < oo. In this case, the fi-

nite dimensional parameter vector is the vector of agent positions: @, := (x}),. -
The mapping G takes the agents positions and computes the empirical measure:
é(@) = %Zf\; 0, where 0,: denotes a Dirac mass at z!. The evolution of @, is

13



simply the law of motion for each agents z!, as described by equation (2.2).

The Operator ﬁg: The market clearing condition now becomes ¢ = Q(z, 1) =
Q(z,G($1)), as described in the introduction.? However, to maintain the price taking
assumption in the finite agent model, we impose that agent i behaves as if their
individual actions do not influence prices. Formally, this means that agent ¢ perceives
the pricing function to be ¢ = Q(z, $; "), where ¢;" = {x{ € N~} is the position
of the other agents N™% := {j < N : j # i}. Ultimately, this will ensure that the
neural network trains the policy rules as if the agents believe that their assets do

not influence the market prices. The approximate distribution impact operator ﬁg is

given by:

(L,V)(a' ;D V(@' 2, @) pa(E (27, 2,8),27,2,Q(2,677))
+§t4 o(17,2,Q(z, )DLV (2, 2,¢) | (3.2)
+]§:>\ w,2) (V' 2,67 4+ 8) = Vo' 2,¢7),

g

where for simplicity we have used the vector and trace notation (rather than the
summation notation in Section 2) and where D,V (2%, 2, $) is the partial gradient
of V with respect to the j-th point in ¢ (ie., 1), and A, = 0 for k # j and
Ay = (2%, 2,Q(z,¢7F)) for k = j.

Convergence properties: The solution V(z¢, 2z, $) is expected to converge to the so-
lution of the master equation (2.8) as the number of agents, N, grows to infinity so
long V' is smooth. Intuitively, this relies on the idiosyncratic noise in the popula-
tion distribution averaging out as the population becomes large, see e.g. Sznitman
(1991). Such results have been extended to systems with equilibrium conditions; see
e.g. Cardaliaguet et al. (2019); Lacker (2020); Delarue et al. (2020).

5In the examples we consider, it is straightforward to extend @ to an empirical measure because
Q only depends upon moments of the distribution. For more complicated cases, we could fit a kernel
to the empirical measure to approximate smooth density.
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3.2 Discrete State Space Approximation

We consider N points in the state space, denoted by &, ...,y € X. We approximate
g by a vector @ = (¢1,...,0y) € RV, whose values represent the masses at &1, ..., Ey.
The mapping G then takes the form: G(p) = SN, ¢,0¢,, where &, denotes a Dirac
mass at &,. So, the finite agent approximation fixes the mass associated to each z!
and allows the x! values to move whereas the discrete state space approximation fixes
the grid points &, and allows the masses at each grid point to change.

We denote by ¢; the vector at time ¢. Its evolution is given by an ordinary

differential equation in dimension N of the form:

dp, = M@(Zn @t)dt (3-3)

describing the evolution of mass at &,...,&y. The right-hand side needs to be ob-
tained using information from the KFE (2.7). In our numerical examples we use a
finite difference approximation to the KFE to derive ug, analogous to the approxi-
mation described in Achdou et al. (2022a). However, the technique can be applied to
other types of approximations, like the finite volume method used by Huang (2023b).
In Appendix B.2, we provide an explicit example for the Krusell and Smith (1998)
model using a finite difference scheme. Here, we describe a generic approximation of

the KFE equation (2.7) using a finite difference scheme:

N, N,
. %A JRUERPCT BN A
Mcﬁ(zv 50) = Z awj [:U‘IJ (Z7 90) © 90] + 5 axjwk [Zx,jk(zv 90) © 90]
Jj=1 Ji,k=1

+ AA¢p)Pl ©alz, @) — @)

where ©® denotes the element-wise product of vectors (Hadamard product), and

K i(2,0), Tojk(z,9), Si(2,9), alz,$) € RY and ¢(z,¢) € (RV)Y are the vectors
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representing the values on the grid points:

P (2.0) = (fag (@ (s 2.9). 6002, Q(, @) :n =1, N)
Yo g(z,0) = (E k(@ s 2, 0),6ny 2,Q(2,0)) : = 1,...,N>
5i(2,9) = (§(&n, 2, 9) in=1,.., N)
S(z,0) = ($(6ns 2, 9)) in=1,..,N)
a(z,¢) = (I = (0, [$ (2 @) Dn)j=1,ne| 10 =1, N).

Here, 3%., é:vijkv and A¢ are operators that approximate derivatives and position
shifts due to jumps. Informally, éxj and 3%% take the function values on the grid
points and return finite difference approximations of the first derivative w.r.t. z; and
the second derivative w.r.t. (z;,zy). Informally, A¢ takes the function values on the
grid points and returns interpolated values at shifted inputs &, — §,, which may not
be on the grid. More formally, 3%,, éx].,xk, and A¢ are operators RY — RY that map
vectors f € RY of function values of a function f on the grid (i.e., fn = f(&)) into
vectors of the same size, such that, (9, A Dn = 0, f(6n), (8 o D) & Oy [ (&),

and (Aelf])n & f(En — o).

The Operator ﬁg : The approximate distribution impact operator ﬁg is defined by:

N
(LgV)( Z )0,V (2, 2,0),
where p5,(2,¢) denotes the n-th coordinate of the N-dimensional vector p,(z, ).

Convergence properties: Once again, we expect the solution of the approximate master
equation V' (z, z, §) to converge towards the solution of the true master equation (2.8)
so long as V' is smooth. Convergence of mean field games with discrete state spaces
to mean field games with continuous state spaces has been proved by Bayraktar et al.
(2018); Hadikhanloo and Silva (2019) without noise or with idiosyncratic noise, and

by Bertucci and Cecchin (2022) with common noise.

6The precise forms of éfrw 5%,“, and A¢ are implementation-specific. In the most common

arrangement, grid points are positioned on a rectangular grid, the operators 52]. and 3%” compute
approximate derivatives at each point based on differences in function values to neighbor grid points,
and the operator Ay implements linear interpolation on the regular grid.
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3.3 Projection onto Basis

Distribution approximation: In this approach, we represent the distribution g; by

functions of the form:
. N
gi(x) = G(@0)(x) := bo(x) + D Pnibn(w),
n=1

where ¢y == (P14, ..., PN1) € d := RY is a vector of coefficients and bg,b1,...,by is a

collection of linearly independent real-valued functions on X that satisfy

1, n=0
/X b () da = (3.4)

0, n>1

and we refer to as the basis of the projection. To complete this approximation de-
scription we need to specify the the law of motion for ¢, and the choice of basis.

As in the discrete state space approach, the evolution of ¢, is given by an ODE
of the form (3.3) with drift p,. To derive ug, we would like to use the KFE (2.7)
directly. However, if we substitute our projection §; into the KFE, then we a get a

linear equation system:

N
> Hgnibn() = 1 (&, @, 24, Gr) (3.5)
n=1

for 41, that has generically no solution for N' < oo because we typically have an infinite
number of equations (for each x € X') but only N degrees of freedom to solve these
equations. To make progress, we need to generate a finite set of equations to solve.
One option would be to discretize the z-dimension, as in the previous technique.
However, we instead find it helpful to work with a more general discretization to a
set of M > N “test functions” ¢ : X — R. This is useful because it ultimately allows
us to choose test functions that focus the approximation accuracy on pre-selected
statistics of the distribution that are likely to be economically important. E.g., if
prices ¢; = Q(z, g;) depend only on the mean, then it makes sense to choose test

functions representing these moments. To make this idea precise, we start with the
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integral form of the KFE (2.7) before integration by parts:

d [x ¢(x)gi(x
dt

dz . . *
) = /‘XE; (x,ztygt):Q(b(x’Ztagt)gt(l')dl‘ = lud)(ztygt;c )

that has to hold for all the M test functions. This variant of the KFE describes
the time evolution of the statistics [y ¢(x)g:(x)dz of the distribution.” We define
coefficient drifts g (2, $) as the regression coefficients that minimize, in the least-

squares sense, the M linear regression residuals®

N
(2 9) = 1, (2, G2 E) = X pon(:9) [ oml@bula)dz,  m=1,.. M.
n=1

Ultimately, this means that our approximation is most accurate on the chosen statis-
tics encoded in the test functions.

The approximation presented so far works, in principle, for any choice of basis.
Here we propose a basis that approximately tracks the persistent dimensions of g,
while neglecting those dimensions that mean-revert fast. These persistent dimensions
of the distribution are related to certain eigenfunctions of the differential operator
characterizing the KFE (2.7). Because this differential operator is generally time-
dependent and stochastic, we first replace it by a time-invariant operator L. For
example, this could be the steady-state operator £ that is defined as the KFE
operator at the steady state, g, = ¢°° in a simplified model without common noise.”
Let {b; : i > 0} be the set of eigenfunctions of L5 with corresponding eigenvalues
{\i € C : ¢ > 0}. If the dynamics prescribed by the KFE are locally stable around
the steady state ¢®°, there is one eigenvalue \g = 0 with eigenfunction by = ¢** and
all remaining eigenvalues have negative real part, ®\; < 0. We pick as our basis
bo, b1, ...,bn the N 4 1 eigenfunctions corresponding to eigenvalues with real parts
closest to zero as these represent the most persistent components. We provide fur-

ther details on this basis choice in Appendix C.

"We recover the original KFE (2.7) for the Dirac delta distributions as test functions, i.e. ¢ =,
forz € X.

8In practice, the integral terms appearing in the residual formula have to be computed either
analytically (if possible) or by numerical quadrature.

90ur chosen basis approximately tracks the persistent dimensions of g, if 25" is similar to full
stochastic operator LK. This is plausible for ZKF = LKF55 hecause both operators share many
similar features.
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The Operator ﬁg : The approximate distribution impact operator ﬁg is defined by:
L N
(LgV)( Z )05,V (2,2, ).

Convergence: There are fewer results about convergence for projections in the con-
tinuous time mean-field-game literature. However, in discrete time, Prohl (2017) has

proven convergence results for particular projections.

3.4 Relationship to Continuous Time Perturbation Approaches

All approaches offer a global characterization of the aggregate dynamics. This opens
up the possibility of studying the full nonlinear dynamics but requires non-trivial
approximations to the KFE to preserve the nonlinearity. Here, we briefly contrast
our approaches to continuous time perturbation approaches that replace the nonlinear
evolution of aggregate states by a simpler linear or quadratic one. We compare to
state space perturbations rather than sequence space perturbations since they are
closer to our work.

Ahn et al. (2018) adapts and extends the perturbation approach of Reiter (2002,
2009) to continuous-time settings. They first discretize the state space and then
linearize the model with respect to aggregate dynamics. This allows the authors to
solve for equilibrium using conventional matrix algebra techniques. In our setup, this
is analogous to linearizing the finite-dimensional master equation that results from
our discrete state space approximation and imposing their dimension reduction.

The perturbation method of Bilal (2023) works directly with the master equation
formulation. Relative to traditional techniques, they take linear or quadratic per-
turbations of the master equation with respect to the aggregate states (z,¢g). The
approximation by a linear or quadratic functional form reduces the complexity of
the problem because one only needs to solve for the perturbation coefficients not
for the value function on the infinite-dimensional state space of the full nonlinear
problem.’® By contrast we obtain a finite-dimensional master equation by means of
approximating the distribution, which allows us to preserve the full nonlinearity of

the problem.

0Note that, when solving the remaining equation numerically, Bilal (2023) chooses a finite-
difference method, which still requires a discretization of the state space akin to our discrete state
space approach.
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Alvarez and Lippi (2022) use Fourier methods to analytically characterize impulse
responses functions to shocks to the cross-sectional distribution ¢; in a model that
features a linear KFE and a constant z-state.!! That approach is closely related to
our projection method based on an eigenfunction basis. Specifically, if the KFE is

truly linear, then the following proposition holds:

Proposition 1. If the KFE (2.7) is of the form dg; = L5 g,dt with a (constant)
linear operator LXY | by = ¢, by, ..., by are eigenfunctions of LK with eigenvalues
M =0, A, ..., Ay, and go — ¢*° = S0, wiob; € span{by,...,by}, then g, satisfies
equation (2.7) for all t > 0 if and only if, for all t > 0,

N
G =9 9" => ©ioe""bi. (3.6)

i=1
Proof. See Appendix C. m

This says that, if the KFE is linear and we use £ = £KF to form the eigen-
function basis, then we are in the non-generic case in which we can approximate the
KFE perfectly because the equation system (3.5) has a solution even though there
are only finite degrees of freedom. The connection to the impulse response formula
provided by Alvarez and Lippi (2022) is as follows. If we consider an initial shock
that moves gy away from ¢*® in a way such that gy — ¢*° is spanned by by, ..., by, then
equation (3.6) tells us exactly how the distribution evolves over time. We can further
integrate this equation with respect to any function f : X — R to obtain a formula
for the dynamics of the statistic | f(z)g;(z)dz over time that resembles the impulse
response representation of Alvarez and Lippi (2022).12

Our computational approach is different from Proposition 1 in that we do not
presume a linear KFE and so allow for non-linear distributional dynamics. In this
case, the KFE can no longer be approximated perfectly on a finite basis and so there
are no closed-form expressions in the spirit of equation (3.6). Instead, we need to
make additional choices about how to approximate the KFE, which leads to the more

complicated procedure outlined in Section 3.3.

H Alvarez et al. (2023) employ similar methods in a nonlinear model but linearize dynamics first.

12A difference to Alvarez and Lippi (2022) is that, in the context of their model, they know closed-
form solutions for the eigenfunctions and they consider N = 0o, so that they can consider any initial
distribution displacement gg — ¢°°.
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4 Solution Method

All approaches in Section 3 lead to finite approximations to the density, g, and the
master equation operator L. However, the resulting master equations are high di-
mensional and so cannot be solved by traditional numerical techniques. Instead, we
represent the solution to the approximate master equation by a neural network and
deploy tools from the “deep learning” literature to “train” the neural network to solve

the approximate master equation.

4.1 Neural Network Approximations

A neural network is a type of parametric functional approximation that is built by
composing affine and non-linear functions in a chain or “network” structure (see
Goodfellow et al. (2016)). We let X := {x,z ¢} denote the collection of inputs
into the neural network representation of the value function. We denote the neural
network approximation to the value function by V(X) ~ V(X;0), where © are the
neural network parameters that depend upon the architecture. There are many types

of neural networks. The simplest form is a “feedforward” neural network which is

defined by:

h — ¢(1)(W(1)X’ + o) ... Hidden layer 1

R = o (P E pH= L pH)y Hidden layer H (4.1)
o= WHFDRUH) 4 p(H+D ... Output layer
V = ¢4+ (o) ... Output

where the {h("},cp are vectors referred to as “hidden layers” in the neural network,
{W(i)}ig(HH) are matrices referred to as the “weights” in each layer, {b(i)}ig(HJrl)
are vectors referred to as the “biases” in each layer, {¢'Y};<(z11) are non-linear func-
tions applied element-wise to each affine transformation and referred to as “activation
functions” for each layer. The length of hidden layer, A, is defined as the number
of neurons in the layer, which we refer to as #h®. The total collection of parame-
ters is denoted by © = {W® b0}, 5 1). The goal of deep learning is to train the

parameters, O, to make V(-;©) a close approximation to V.
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The neural network defined in (4.1) is called a “feedforward” network because
hidden layer 7 cannot depend on hidden layers j > ¢. This is in contrast to a “recur-
rent” neural network where any hidden layer can be a function of any other hidden
layer. It is called “fully connected” if all the entries in the weight matrices can be
non-zero so each layer can use all the entries in the previous layer. In this paper,
we will consider a fully connected “feedforward” network to be the default network.
This is because these networks are the quickest to train and so we typically start by
trying out this approach. However, there are applications where we find that more
complicated neural network architectures are useful. In particular, we find that the
type of recurrent neural network suggested by the Deep Galerkin Method in Sirignano

and Spiliopoulos (2018) is helpful for discrete state and projection approximations.

4.2 Solution Algorithm

We train the neural network to learn parameters © that minimize the error in
the master equation and boundary conditions. We describe the key steps in Algo-
rithm 1.!3 Essentially, the algorithm samples random points in the discretized state
space {z, z, 9}, calculates the master equation error on those points under the current
neural network approximation, and then updates the neural network parameters to
decrease the master equation error. In practice, our loss consists of two terms: £¢ for
the average mean squared master equation error and £, which is used to incorporate
information about the shape of the solution (e.g., monotonicity or concavity). Spe-
cific examples of £° will be discussed in the following sections. In the deep learning
literature, this approach is sometimes referred to as “unsupervised” learning (e.g. Azi-
novic et al. (2022)) because we do not have direct observations of the value function,
V(z,z,§), and instead have to learn it indirectly via the master equation.

Although the algorithm is straightforward to describe at the high level, imple-
menting the deep learning training scheme successfully involves a lot of complicated
decisions. We discuss these decisions in detail for solving the Krusell and Smith (1998)
in Sections 5.2 and B.3. Here we discuss sampling, which is a particularly challenging

implementation detail.

13The generic pseudo-code given in Algorithm 1 can be modified in practice. For example, instead
of fixing a precision threshold, one can fix a number of iterations, and instead of using a fixed
sequence of learning rates, one can use an adaptive method, such as Adam.
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Algorithm 1: Pseudo Code for Generic Solution Algorithm

Input : Initial neural network parameters ©°, number of sample points M,
positive weights k¢ and «° on the master equation errors; sequence
of learning rates {a,, : n > 0}, precision threshold ¢

Output: A neural network approximation (x, z,¢) — V(z, z, $; ©) of the
value function.

1: Initialize neural network object V(z, z, $; ©°) with parameters ©°.
2: while Loss > ¢, in iteration n do

3:  Generate M new sample points, S™ = {(Zm, Zm, Pm) bm<n-

4. Calculate the weighted average error:

E(O",8") = k°E(O",S") + r2E(O",ST)
where £°¢ is the average mean square master equation error:

1 A PN n
56(@1175171) = Taonl Z ’(‘CV(Q:VZ’SO’@ ))|2
|S | (z,2,p)€S™

in which the derivatives in the operator £ are calculated using automatic

differentiation and £° is a penalty for a “wrong” shape that depends upon the

specific problem.
5:  Update the parameters using stochastic gradient descent:

0" = 0" — a, DoE(O", S

where Dg€ is the gradient (i.e., vector differential) operator.
6: end while

4.2.1 Sampling

A very important aspect of our solution algorithm is the approach used to sample
the set of training points S™ in each iteration. Sampling ultimately has to be tailored
to the specific application at hand. This is a difference between deep learning for
continuous time and discrete time techniques. Discrete time models need to calculate
expectations and so typically need to use simulation to approximate the expectation
operator. Continuous time models replace the expectation term in the Bellman equa-
tion by the derivative terms in the HJBE and then sample points on which to evaluate

the HJBE. This gives continuous time techniques more flexibility in how to sample

23



but can also make the sampling task harder. The following general considerations are
relevant when deciding on how to sample.

We can sample the idiosyncratic state x, the aggregate exogenous state z, and the
distribution state ¢ independently with different approaches. The separation between
x and @ deserves particular emphasis in the context of the finite agent approxima-
tion, for which also ¢ contains a sample of z-points (for the other agents). This is
because we can focus the sampling on regions of the idiosyncratic state space with
high curvature without having to increase the number of agents so that simulations
have many agents in those regions.

Sampling x and z is less complicated because their dimension is usually relatively
low. For example, in macro models a typical dimension of z is 2-3 and a typical
dimension of z is 1-5. For these variables, we typically sample from a pre-specified
statistical distribution such as the uniform or normal. The sampling can be refined by
using “active sampling” (see, e.g., Gopalakrishna (2021) and Lu et al. (2021)), which
adapts the sampling during training to actively learn in regions where the algorithm is
having trouble minimizing the loss function. This is achieved by regularly inspecting
the losses during training and adding training points to regions with the largest losses.

Sampling the distribution approximation ¢ is significantly more complicated. This
is because it is typically high-dimensional and so we can only train the neural network
on a very small subset of the total possible distributions. In this sense, deep learning
does not break the “curse of dimensionality”. Instead, it gives flexibility to train on a
useful subspace that gives enough information to the value function for economically
relevant distributions. This means that choosing the right subspace on which to
sample is very important for the algorithm to converge in reasonable time (or at all).
Ultimately, this requires us to use some information about the model solution in the

sampling. We have focused on the following three sampling schemes:

(i) Moment sampling: We first draw samples for selected moments of the distri-
bution that are important for calculating prices Q(z, ¢). We then sample ¢
from a distribution that satisfies the moments drawn in the first step. E.g., in
many macroeconomic models, the distribution mean is particularly important
for calculating prices. In this case, we would sample from the mean and then

draw ¢ from a distribution with that mean.!4

Y This final step could involve sampling from a pre-specified distribution (e.g. uniform) or from
an ergodic distribution, as described in (iii).
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(ii) Mized steady state sampling: We first solve for the steady state for a collection
of fixed aggregate states z. This needs to be done only once before training
begins. We then draw in each training step random mixtures of this collection

of steady state distributions and then perturb with additional noise.'®

(iii) Ergodic sampling: We adapt the training sample dynamically by regularly simu-
lating the model economy based on the candidate solution for the value function

from a previous iteration.

Two additional issues arise in sampling schemes that adapt the training sample
dynamically, such as active sampling (for  and z) and ergodic sampling (for ¢).
First, these schemes only adapt the sampling distribution in a meaningful way if
the current guess for the value function is sufficiently good. It is therefore advisable
to start with a pre-specified sampling distribution in early training and switch to a
dynamic sampling scheme later on. Second, dynamically adapting the sample might
lead to instability of training due to feedback effects between the training sample and
the trained solution. We have found this issue to be particularly relevant for ergodic
sampling. To mitigate the issue, we have found the following work well: (i) to use
ergodic sampling only for a fraction of the training sample and (ii) to update training
points gradually by simulating over a small time interval starting from the end of the
last simulation rather than repeatedly taking very long simulations to approximate
the ergodic distribution.'®

At a high level, we find the following sampling strategies are useful for the differ-
ent types of distribution approximations. For the finite agent approximation, we find
moment sampling to be simple and effective because the ¢ variables have a natural
interpretation as the idiosyncratic (x) states of the other agents in the population
and so it is straightforward to determine a region of “typical” values to sample from.
For the discrete state space approximation, we find the most stable approach is to
start with mixed steady state sampling and move to ergodic sampling once the neural
network starts to converge. For the projection approximation, we find that a combina-

tion of moment sampling and ergodic sampling is effective. To put moment sampling

15Without these perturbations, the random mixtures remain strictly confined to a subspace whose
dimension (the number of steady states in the collection) is typically much smaller than dim P.

16Tn this sense, despite the name “ergodic sampling”, we do not insist on drawing training points
from the ergodic distribution implied by the current value function candidate. Instead, the ergodic
distribution is reached only eventually once the value function is close to convergence.
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to work with projections requires a rotation of the basis functions so as to isolate the
components that correspond to the selected moments, see Appendix B.2 for details.
We discuss all three sampling strategies in detail for our Krusell and Smith (1998)
example in Appendix B.3.2.

4.2.2 Other Implementation Aspects

Constraining the Value Function Shape: We find that the neural network can converge
to “cheat solutions” that approximately solve the differential equation by setting
derivatives to zero. One way of helping with this is to include terms in the loss
function the penalize undesirable curvature of the value function to enforce the correct
shape (e.g. penalizing non-monotonicity or non-concavity).

Boundary conditions: Algorithm 1 does not include boundary conditions because
we “soften” any hard constraints in the problem (see Section 2.2). Alternatively, we
could also include a boundary condition error £% in the loss function to learn a “hard”
boundary condition with corresponding weight x°. While in principle straightforward,
we have found that the inequality boundary conditions arising from hard constraints
represent a significant difficulty for the robustness of our solution algorithm and re-
quire a careful calibration of the weights on equation residuals (k¢) and the boundary
condition (k®) to achieve convergence.

Staggered updating: In Algorithm 1, when evaluating the master equation residuals
to determine £¢, we compute the policy ¢* as a function of V(-;0) according to
equation (3.1). In principle, there is no need to parameterize the policy & with
a separate neural network. However, in practice there are reasons for doing so, as
suggested by Duarte et al. (2024) and Al-Aradi et al. (2022). First, if equation (3.1)
does not have a closed form solution, the computational cost of solving this equation
numerically at each training point may be prohibitively high. In this case, we could
include a separate neural network for ¢* with separate parameters ©¢ and use this
network in place of the true solution to equation (3.1) to evaluate the master equation
errors. This would necessitate adding steps into Algorithm 1 that involve updating
the ¢*-network for a given V-network. Second, even if equation (3.1) can be solved,
adding a separate neural network for ¢* allows us to slow down the updating of the
policy function akin to a “Howard improvement algorithm”. To do so, we can make
the updating of ©°¢ infrequent, effectively fixing the same policy rule ¢* for several

iterations in the training of ©. In some implementations for our numerical examples
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we use this variant of our baseline algorithm. We have found that this can help with

stability, particularly when starting from a poor (e.g. random) initial guess.

5 Example: Uninsurable Income Risk and TFP
Shocks

A canonical macroeconomic model with heterogeneous agents and aggregate risk is
Krusell and Smith (1998), which we refer to as the KS model. In this section, we
illustrate how our three solution approaches can be deployed to solve the continuous
time version of the model described in Achdou et al. (2022a) and Ahn et al. (2018).

5.1 Model Specification

Setting: There is a perishable consumption good and a durable capital stock with
depreciation rate §. The economy consists of a unit continuum I = [0, 1] of house-
holds and a representative firm. The representative firm controls the production
technology, which produces consumption goods according to the production function
Y, = e K®L;~“, where K, is the capital rented at time ¢, L, is the labor hired at time
t, and z is the aggregate productivity, which follows an Ornstein-Uhlenbeck (OU)
process dz; = 1n(z — z;)dt + odBY.

Heterogeneous households: Each household i € [0, 1] has discount rate p and gets
flow utility u(c!) = (ci)*=7/(1 — 7) from consuming ¢! consumption goods at time t.
Each household has two idiosyncratic states =} = [a!, [{], where a} is the household’s
net wealth and [} € {ly,l5} is the household’s labor endowment, where 1 < Iy so [; is
interpreted as unemployment and [, is interpreted as employment. Labor endowments
switch idiosyncratically between [; and I, at Poisson rate A(l¢). Households choose

consumption ¢! and their idiosyncratic state evolves according to:

dt +

V.

dri = d a?ﬁ _ s(al, ¢, ¢t ry, wy) |
: i

li

] dJi

where 7; is the return on household wealth, w; is the wage rate, lvi is the complement
of Ii, J! is an idiosyncratic Poisson process with arrival rate A(l}), and the agent’s

saving function is given by s(a,l,¢,r,w) = wl+ra — c. So, g; denotes the population
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density across {al,li} at time ¢, given a filtration F} generated by the sequence of
aggregate productivity shocks.

Assets, markets, and financial frictions: Each period, there are competitive mar-
kets for goods, capital rental, and labor. We use goods as the numeraire. We let r;
denote the rental rate on capital, w; denote the wage rate on labor, and ¢; = [ry, w]
denote the price vector. Given g, and z;, firm optimization and market clearing imply

that r; and w; solve:

ry=ae* KM L -6, wy = (1 — ) KFL™°,
K, = Z / agi(a,l;)da L= Z / Ligi(a,l;)da.
je{r2y’F je{ray’®

where we assume that economy starts with the steady state labor distribution. So, in

the terminology of Section 2, we can write the prices explicitly as functions of (g, 2;):

= Qg ) (5.1)

Wy

z a-l -«
0" = [T’t:| _ [ae ¢ (Zj€{1,2} Jr agt(a,lj)da> L' -9
(1 —a)e* (Zj€{1,2} Jr ag:(a, lj)da) L«

Asset markets are incomplete so households cannot insure their idiosyncratic labor
shocks. Instead, households can trade claims to the aggregate capital stock in a
competitive asset market. The original Krusell and Smith (1998) model imposes the
“borrowing constraint” that each agent’s net asset position, a!, must satisfy ai > a,
where a is an exogenous “borrowing limit”. This generates an inequality boundary
constraint and a mass point, as discussed in Achdou et al. (2022a). However, as
discussed in Section 2.2, to help the neural network train more smoothly, we instead
follow Brzoza-Brzezina et al. (2015) and introduce a penalty function ¢ at the left
boundary, replacing the agent flow utility by U(as, ¢:) = u(cy) + lay<a,t(ar). The
penalty function we use here is the quadratic function: ¢ (a) = —%/ﬁ(a — ap)? where
k is a positive constant and a; > a.

Master equation: Let ¢*((a,l), z, g) denote the equilibrium optimal household con-
trol. Then, for the ABH model, the master equation (2.8) becomes:

0= ‘CV((G’ l)7 279) = - pV((a, l)’ ng) + U<C*((a’ l)7 Zag)) + 1a§alb¢(a)
+ (Lo + L.+ LYV ((a,1), 2, 9)
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where the operators become:

v,

FADV((@ D), 29) = V(@ 1), 2,0)
LV((@ D), %,9) = 0.V (@ D), 5 9)0(= — 2) + 50°0.V (@), 5. 9)

LyV((al),z,9)= > /RngV((a,l),Z,g)(b)ﬂg((b,lj)z,g)db

Jje{1,2}

L.V ((a,1),2,9) = 0.V ((a,1), 2, 9)s((a, 1), ¢*((a, 1), 2, 9), (2, 9), w(z, 9))
N

where D, is the Frechet derivative with respect to the marginal density g(-,1;) and
the KFE is:

where [ denotes the complement of [, where r(z,9) and w(z, g) solve the system of
equations (5.1), and the optimal consumption policy satisfies the first order optimality
condition 0,V ((a,l), z,9) = u'(c*((a,1), 2, g)).

In the next sections, we solve this master equation numerically using Algorithm 1.
Because the optimal control is a function of the 9,V ((a,l), 2, g), it will turn out to
be more convenient to solve the master equation for the partial derivative, which we
denote by W((a,l), z,9) := 9.V ((a,l), z,g). The parameters that we use in numerical

experiments are in Appendix B.1.

5.2 Implementation Details

The implementation details for all methods are summarized in Table 2. We provide
a more detailed description of the implementation in Appendix B.3. For the finite
agent approximation, we use a “plain vanilla” fully connected feed-forward neural
network whereas for the discrete state and projection methods, we use a more com-
plex architecture based on Sirignano and Spiliopoulos (2018). Moment sampling is
sufficient for the finite agent method but not for the other techniques. For the discrete
state technique, we use mixed steady state sampling in early training and gradually
increase the fraction of the training set taken from the ergodic sample. For the pro-

jection method, we use moment sampling for the mean wealth dimension and ergodic
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sampling for the other dimensions.

5.3 Results

We solve the Krusell-Smith model using all three methods. We first discuss the accu-
racy of the results for the full model. We then discuss the model without aggregate

shocks and possible ways to use neural network training for calibration.

5.3.1 Mean Reverting TFP Process

For each approach, the error in the neural network approximation to the master equa-
tion is shown in Table 3 below. Evidently all approaches have master equation losses
to the approximate order of 10~°, which we interpret as convergence. In Appendix D

we show that all three methods are robust across different training runs.

Master equation training loss

Finite Agent NN 3.037 x 1075
Discrete State Space NN 9.639 x 107
Projection NN 8.506 x 1076

Table 3: Neural Networks’ final losses for solving the KS master equation.

In order to sense check our solution, we compare output from our neural networks
to output from traditional approaches. Unfortunately, we do not have a clear bench-
mark solution because there is no traditional technique that provides an arbitrarily
precise solution to the model with aggregate shocks. We choose to compare to the
recent approach suggested by Fernandez-Villaverde et al. (2023), which uses a neural
network to approximate a statistical law of motion but solves the Master equation
using a finite difference scheme. It is understood that this technique is good approxi-
mation for the KS model. We make our comparison by computing sample paths from
all of our solution approaches. For the discrete state space and projection methods,
we can generate sample paths by iterating the approximate equilibrium KFE. For
the finite agent method, computing the sample path is more complicated because we
need to average over the transition matrices generated by many draws from the finite

population. We describe this in detail in Algorithm 4 in the Appendix B.7.
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Finite Population  Discrete State Projection

Neural Network

(i) Structure Fully  connected Recurrent with Recurrent with
feed-forward embedding embedding

(ii) Activation, (¢());<y tanh tanh tanh

(ii) Output, pUH+1) soft-plus elu activation and elu activation and

factor (ag +a)~"  factor (ap +a)~7

(iii) Layers, H 5 recurrent: 3 recurrent: 3

embedding: 2 embedding: 2

(iv) Neurons, #|h| 64 recurrent: 100 recurrent: 100

embedding: 128 embedding: 64

(v) Initialization W(a,-)=e* random random

(vi) Auxiliary networks  none consumption consumption

Sampling

(i) (a,l) Active  sampling Uniform sampling Uniform sampling
[amina amax] X [amina amax] X [amina amax] X
{y1, 92} {y1, 2} {y1 2}

(ii) (i)i<n e Moment sam- e Mixed steady- e Moment sam-
pling: sample r state sampling pling: sample K
then random dis- e Ergodic sam- then other coeffi-
tribution of agents pling cients uniformly
to generate r e FErgodic sam-

pling

(111) z U[Zmin7 Zmaa:] U[Zminu Zmax] U[Zmin> Zmaz’]

Loss Function

(i) Master equation & &° &

(ii) Constraints 0uW(a,-) < 0and 9W(a,-) < 0and 9JW(a,-) < 0 and
0. W(a,-) <0 0.Wi(a,-) <0 2. Wi(a,-) <0

(iii) Weights

k¢ =100, k* =1

KC=r*=1

KE=r"=1

Training

(i) Learning rate 1072 Decaying from Decaying from
3x107*t0 107 3 x 107 to 107°
(ii) Optimizer ADAM ADAM ADAM
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Figure 1 offers a visual inspection of the difference between our neural network
solutions and Ferndndez-Villaverde et al. (2023) for a random path of productivity
shocks. The upper-left panel shows the draw from the Ornstein-Uhlenbeck process:
dz; = n(z — 2)dt + 0dB). The upper-right compares the evolution of capital stock.
The second row compares the evolution of prices. The third and fourth rows compare
the population distribution at various times in the simulation. Evidently we get a
similar path for all variables across all the methods.

In Figure 2, we generate multiple random TFP paths, z;, and show the evolution of
our neural network solutions and the Ferndndez-Villaverde et al. (2023) solution in a
“fan chart” that displays percentiles for the evolution of the population. In particular,
we generate 1000 TFP paths starting from zy = 0 and calculate the corresponding
aggregate capital evolution paths. At each time ¢, for each solution, we compute the
pth-percentile of the capital stock across simulation paths. We then plot the time
series of the percentiles for p equal to 10%, 30%, 50%, 70%, and 90%. Evidently,
the finite agent and projection methods are a close match to Fernandez-Villaverde
et al. (2023). The discrete state space method does a good job at central percentiles
but has more difficulty at the extremes. This reflects our general experience that the
discrete state space approximation is the most difficult to work with for the KS model
and relies most heavily on ergodic sampling, which decreases the accuracy away from

the ergodic mean.

5.3.2 Calibration

As has been suggested by a number of papers (e.g. Duarte et al. (2024)), a potential
benefit of deep learning algorithms is that we can include the parameters, (, as
additional inputs into the neural network, V(X Q) ~ V(X ,(;©), and then train the
neural network using sampling from both X and (. In principle, this means that
we can train the model once to get a solution across the parameter space and then
use V to calculate the moments for different parameters to calibrate the model. In
practice, this will be easier if sampling approach does not have high dependence on
the solution. This means that, in our example, the finite agent method is the natural
candidate for testing this approach because it only requires moment sampling in the
training. In Appendix B.4, we provide a simple example that calibrates the borrowing
constraint to match a particular capital-to-labor ratio. For the other methods this

would be much more difficult because their training requires ergodic sampling.
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Figure 1: Simulations for the Krusell-Smith Model. The top left plot is the TFP shock
path, the top right panel is the aggregate relative capital change. The second row left plot
shows the relative change in the capital return and the second row right plot shows the
relative change in the wage rate. The plots on rows three and four show the distribution at
different times in the simulation. The labels “NN, FA”, “NN, DS” and “NN, P” refer to
solutions from the finite agent, discrete state, and projection neural networks respectively.
“FV?” refers to the solution from Ferndndez-Villaverde et al. (2023). Subscript sss refers to
the stochastic steady state at z = 0.
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Figure 2: Forecasted aggregate capital dynamics starting from the stochastic steady state
(sss) for the Krusell-Smith Model. The left plot is the fan chart for the TFP shock path,
generated from the OU process with initial condition zy5 = 0. The right panel is the time
series plot for relative change in aggregate capital at percentiles 10%, 30%, 50%, 70%, 90%
(from the lowest to the highest). The labels “NN, FA”, “NN, DS”, and “NN, P” refer to
solutions from the finite agent, discrete state, and projection neural networks respectively.
“FV?” refers to the solution from Ferndndez-Villaverde et al. (2023).

5.3.3 Fixed Aggregate Productivity

For fixed aggregate productivity, z; = z, our example model is the continuous time
version of the Aiyagari-Bewley-Huggett (ABH) model discussed in Achdou et al.
(2022a). This model has a precise finite difference solution and so acts as a more
detailed “check” for the accuracy of our solution technique. Table 4 reports the
mean squared error (MSE) between our steady state solution and the finite difference
solution for the finite agent and discrete state space methods. It confirms that the
neural network solutions for both methods align very closely to the finite difference
solution. Figure 7 in Appendix B.5 illustrates this visually by comparing the solutions

from the finite agent, discrete state space, and finite difference methods.

Master equation loss MSE(NN, FD)
Finite Agent NN 3.135 x 1075 4.758 x 107°
Discrete State Space NN 9.303 x 1076 6.591 x 1075

Table 4: Neural Networks’ final losses for solving the ABH master equation. Master
equation loss is the mean squared error of residuals. MSE(NN,FD) is the mean squared
difference between steady state consumption from the neural network and finite difference
solutions on a wealth grid.

We can also consider the transition path following an unexpected shock to aggre-
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gate productivity (a so-called “MIT” shock). This makes little sense for the discrete
state space approximation and the projection method because both rely on types
of ergodic sampling and so have difficulty with unanticipated shocks. However, we
were able to train our finite agent approximation using moment sampling and so it
makes sense to consider how successfully the neural network approximation can han-
dle transition paths. We do the comparison in Appendix B.6 and find it is remarkably

successful even for large shocks.

5.4 Comparison of Techniques

The different approximations bring different computational difficulties:

1. Dimensionality (N): The approximation dimension needs to be large enough
to capture sufficient shape in the distribution. The projection method can
potentially have the lowest dimension if the choice of basis is efficient (e.g.
N =5 in our Krusell and Smith (1998) example). The finite population needs
to be large enough to average out idiosyncratic noise (e.g. N = 40). The
discrete state space needs to be sufficiently fine to approximate the derivatives
in the KFE, which means it needs a high dimension (e.g. N = 200).

2. Customization: For the finite agent approach, we just choose the number of
agents, V. For the discrete state space approach, we choose a grid and a method
for approximating the KFE on the grid points. For the projection method, we
choose a set of basis function and a set of statistics on which to minimize the
error. In this sense, the projection is potentially lower dimensional because we

need to make more intricate choices in the setup.

3. Computational “bottlenecks”: Each method has its own computational bottle-
necks. For the finite agent method, we need to switch agent positions in the
neural network approximation to V' when we calculate the derivatives of V' with
respect to the other agent positions in equation (3.2). For the discrete state
space method, the dimensionality of the approximation is the main computa-
tional problem. For the projection method, determining the drift p, of the
distribution approximation is computationally involved as we need to solve a
linear regression problem and compute several integrals by quadrature for every

single evaluation of the master equation.
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Although we show that all these computational difficulties can be overcome, we
nonetheless find they have different strengths and weaknesses for solving the KS
model. The finite-agent method is very robust in a number of ways: the neural
network can be trained with the moment sampling procedure, the algorithm only
requires a moderate number of agents (approximately 40), and we can successfully
add parameters as auxiliary states so the model can be solved across the state and
parameter space at the same time.

By contrast, we find the discrete-state method to be difficult to work with. We
believe many of the issues come from having to approximate the derivatives in the
KFE on the discrete state space. One challenge is that this requires a fine grid for
agent wealth (approximately 200 grid points in our example). A related challenge
is that the training samples need to come from relatively smooth densities and so
ergodic sampling is very important. Ultimately, this makes training the KS model
using the discrete state method slow and complicated. In Section 6.3, we consider a
spatial model with locations that are ex-ante different and agents that choose where
to locate instead of having a consumption saving decision. This means the model
is effectively impossible to solve using the finite agent method but ends up being
straightforward to solve when there are a discrete number of locations. Follow up
work in Payne et al. (2024) extends our approach to search and matching models
and also finds that the discrete state approximation is very effective for that class of
models. This offers suggestive evidence that the discrete state method is most helpful
when the KFE does not contain complicated derivatives.

Finally, the projection method brings a different set of trade-offs. Both the finite
agent and discrete state methods feed relatively large state spaces into the neural net-
work and then let the neural network work out how to structure the approximate value
function. By contrast, the projection method requires more choices ex-ante. This al-
lows us to work with a much lower dimensional approximation (approximately 5 basis
functions) and to choose which statistics of the distribution we want to match most
closely in our approximation. For these reasons, we believe the projection method

offers new advantages for the macroeconomics deep learning literature.
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6 Additional Examples

We close the paper by considering three additional examples: a dynamic spatial
model (an extension of the model solved using perturbation in Bilal (2023)), a model
of firms with capital adjustment costs (similar to a continuous time version Khan
and Thomas (2007)), and a version of Krusell and Smith (1998) with both liquid and
illiquid accounts. We have chosen these examples to help understand the power of
the different techniques. The first model can only be solved by using a discrete set of

locations. The other models are well suited to a finite agent approximation.

6.1 Dynamic Spatial Model

Setting.'™ The economy consists of a finite set of locations j € {1, ..., J}, a continuum
of workers i € [0,1], a continuum of capital owners i € (1,2], and a representative
competitive firm at each location j with an owner who consumes their profits. At
any given date t, each worker or capital owner 7 resides at a specific location j. These
agents receive infrequent moving opportunities. There is a perishable consumption
good, tradable across locations, but capital and labor are location-specific and cannot

be traded across locations. The representative firm at location j produces consump-
ag
7,6

K, and L;; are capital and labor hired from capital owners and workers residing

tion goods according to the production function Yj; = exp(8; + x;2¢) K¢ Lj}, where
at location j, respectively. As in the KS model, z; is the aggregate productivity,
which follows the same process as in Section 5.1. 8; > 0 is a time-invariant location-
specific productivity shifter and x; > 0 is a parameter that governs the sensitivity
of production in location j to variation in aggregate productivity z;. The remaining
parameters, ag, a; > 0, denote the capital and labor shares in production and satisfy
o + oy < 1.

Heterogeneous workers and capital owners: In the following, the word agent refers
to either a worker or a capital owner. All agents ¢ € [0, 2] have identical preferences
with discount rate p and they get flow utility u(c) = logc! from consuming ¢! con-

sumption goods at time ¢. Workers (i € [0,1]) are endowed with one unit of labor

17Relative to the model in Bilal (2023), the model presented here differs in two respects. First, we
have chosen a streamlined presentation that does not include housing. This simplifies notation but
does not make the model less general in the sense that, up to a change of parameters, the resulting
master equation is isomorphic to the one in Bilal (2023). Second, the model in Bilal (2023) does not
allow for capital investment and mobility, two features that we add.
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which they supply inelastically in the labor market at location j; where they currently
reside. Workers do not have access to financial markets and therefore consume wage
income each period, ¢! = wji 1, where w;,; denotes the wage at location j and time
t. A worker’s idiosyncratic state, x; = j;, therefore solely consists of the location of
residence. Capital owners (¢ € (1,2]) do not work but are able to accumulate assets
in the form of physical capital, which they rent out to firms at their current location

of residence, ji. The agent’s wealth, a!, evolves according to
day = (rj; ya; — c;)dt,

where r;; denotes the rental rate on capital at location j and time ¢. A capital owner’s
idiosyncratic state, =i = (ji, al), consists of both the location of residence and the
wealth of the agent.

All agents i € [0,2] receive idiosyncratic opportunities to move location with ar-
rival rate ¢+ > 0. Upon receiving such an opportunity, the agent draws idiosyncratic
i.i.d. additive preference shocks for each potential destination j" according to a Gum-
bel distribution with mean 0 and inverse scale parameter v and then chooses one
location j' as their new residence. When moving from j to j', the agent also incurs
a moving disutility of 7; ; > 0. The structure of this location choice problem implies
that, after optimization, ji follows a, possibly time-inhomogeneous, continuous-time

Markov chain with transition rate um; j; from j to 5/ where

el’(‘/ti(j/)_q—j,j’)

igra = g (Vi) = ST GO
Here, V;'(j) denotes the continuation value of the agent conditional on moving to
location ji = j but keeping all other state variables as right before the arrival of the
moving opportunity. The distribution g; = (¢!, gF) consists of a pair of two densities
at time ¢, given a filtration F_ generated by the sequence of aggregate productivity
shocks: ¢! is the population density across {ji} for workers i € [0,1] and g is the
population density across {(ji,al)} for capital owners i € (1,2].

Assets, markets, and financial frictions: Each period, there are competitive mar-
kets for goods and, in each location, for labor and capital. We use goods as the
numeraire. The price vector ¢ = [rj;, wj; : j = 1,...,J] is given by the collection

of all local capital rental rates and wages. Given g; and z;, firm optimization and
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market clearing imply that r;, and w;; solve:

=1 (2t,9¢) =w;(2t,9¢)

_ +x;z ak 1 Oéz _ i+Xjzt pok T or—1
T, = qyelitxi 'KGF LG — 0, Wi = oyelitx "KGELGY

],t_/agt ]7 a, Ljﬂf :gi(j)

By assuming that capital in each location j equals aggregate wealth of capital own-
ers residing in that location, we have assumed segmented financial market. Capital
owners are unable to borrow or lend across locations.

Master equations. The aggregate states are, in principle, (z, g;). However, it turns
out that the cross-sectional distribution of capital holdings within a location does not
matter for prices in this model, so that we can partially aggregate analytically. We can
therefore replace g; with a the 2.J-dimensional vector g := (L1 4, ..., Lyz, K1ty .., Kjz).
We provide additional details in Appendix E.2.

Denote by v!(j, z, §) the value function of a worker and by V*(j, a, z, §) = v*(j, 2, §)+
% log a the value function of a capital owner in recursive form. We justify the additive
separation of the asset state a for capital owners in Appendix E.2. In this model,

there are two (coupled) master equations, one for v! and one for v*.

Proposition 2 (Master Equations). The master equations (2.8) for workers and

capital owners, respectively, are given by
0= —pv'(j, 2,3) +logw;(z,9) + (£; + L. + L5)v'(j, 2, ) (6.1)

0= —pit(Ging) Hlogp+ LEDZL L (g Lk LytGing) (02

where the operators are defined as:

EjU(j,Z,é) ( log (Z 6 v(7=9) TjJ,)) —U(j,Z,Q))

L N 1 L
L.v(j,2,9) = 0.0(j, 2,9)n(z — 2) + 502@2@(], z,§)

J
L;0(4,2,9) Z& v(j, 2, 9)pe(5’,2,9) + > Okl 2, Opx (i’ 2, 3),

j'=1
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the (transformed) KFFEs are:
J
2.9) = 1 (Lm0 L0 - 20),
i) = 1 (S 7MDK = K + (6.0 = 9K,

and the conditional moving probabilities m;, j» are as defined previously. In the limit
ar — 0 in which capital becomes irrelevant, and up to a transformation of model

parameters, this master equation is equivalent to the one in Bilal (2023).

Proof. See Appendix E.2.1. n

Model solution. After aggregation of capital holdings within locations, the model’s
idiosyncratic state space becomes naturally discrete — and, in fact, finite-dimensional.
Because all elements of the reduced distribution vector §; matter directly for prices,
the discrete state space method that includes all entries of §; is most appropriate for
this model. We solve the model with J = 50 locations. We provide further details on
the parameterization and numerical implementation in Appendices E.2.2 and E.2.3,
respectively. Here, we only note that, with regard to moving costs 7;;;, we create
a simple example based on a “cluster structure” with a central cluster and several
periphery clusters that makes is more costly to move from/to some locations (the
periphery) than others. The terminal loss after training is 7.029 x 107%. Further
details on the loss decay are provided in Appendix E.2.4.

Figure 3 depicts some aspects of the computed model solution. The two top rows
illustrates wages and gross rental rates in the stochastic steady state, as a function of
local productivity (top row) and by location index (second row). The remaining rows
depict the effects of a recession (reduction in z;) on these factor prices (third row)
and on worker migration and capital flows (bottom row). Except for the scatter plots
in the top row, locations in the figure are sorted by their sensitivity to the aggregate
productivity shock x; in ascending order. Note that there are several dimensions of ex-
ante heterogeneity across locations, so that the non-monotonic variation in the plots
does not indicate training errors. The overall picture that emerges is economically
meaningful. Wages and rental rates in harder-hit locations fall more in a recession
(third row). As a result, migration and capital flows in the recession are directed

from high-x; to low-x; locations (bottom row). The cluster structure of moving
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Figure 3: Illustration of model solution for the dynamic spatial model. The two top rows depict
the factor price distribution across locations in the stochastic steady state, (z,g) = (0, ¢°%%), as a
function of location-specific productivity 5; (first row) and of location j (second row). The remaining
rows depict the impact effects of a hypothetical “recession shock” that moves the aggregate state to
(2,9) = (—0.02,¢g%°%). The third row shows the relative change in factor prices in a recession and
the bottom row the resulting net flows of workers as capital as a proportion of their current values
(nr(d, 2, 9¢)/ Ly and pg(J, 2, G+)/K;+). In all panels but in the top row, locations j are sorted by
their sensitivity to aggregate productivity (x;) in ascending order. Blue bars/dots depict periphery
locations and red bars/dots depict central locations.
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costs matters primarily for the baseline level of wages and rental rates which tends
to be lower in central locations (top row): these locations attract more workers and
capital due to a higher option value of moving. In addition, among locations that
very sensitive to the shock, periphery locations experience noticeable stronger capital
outflows than center locations with a comparable shock sensitivity. Interestingly, we
do not observe a similar pattern for worker flows.

Figure 4 illustrates worker and capital movements over time in response to a
negative 2-standard deviation productivity shock. The figure depicts, at each point
in time, the cross-location minimum, median, and maximum of the deviation of the
local worker populations (left panel) and capital stocks (right panel) relative to their
stochastic steady state values. The dynamic response paths for any given of the 50
locations are in between the minimum and maximum line. In line with the impact
effects plotted in the bottom row of Figure 3, we observe that workers and capital
owners migrate out of a the few hardest-hit locations, whereas the median location
experiences a population (and capital) inflow. For capital, there is an additional
effect from reduced investment into the capital stock in all locations as rental rates
fall everywhere, see the right panel in the third row of Figure 3. This effect leads to

a reduction in the capital stocks in all locations in the medium term.
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Figure 4: Impulse response functions for local worker populations and capital stocks. The
figure depicts the dynamic paths of min; (L;:/L5*), median; (Lj+/L3**), max; (Ljt/L3*)
(left panel) and min; (Kj:/K;*), median; (K;./K;**), max; (K;./K;**) in response to a
“recession shock” that moves the aggregate state from the stochastic steady state, (z,g) =
(0,%°%%), to (z,9) = (—0.02,¢°*°) at t = 0 in the absence of further (realized) shocks after
t=0.
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6.2 Heterogeneous Firms With Adjustment Costs

Setting. There is a perishable consumption good and durable capital stock. The
economy consists of a representative household and a continuum of firms i € [0, 1]
that invest in capital and hire labor. There are competitive markets for goods, labor,
firm equity and risk free bonds but capital is not tradable. We use goods as the
numeraire and denote the labor wage by w;, the bond interest rate by r;, and the
price of equity in firm i by pi. The representative household chooses consumption,

C;, labour supply, L;, and the wealth invested in firm ¢ equity, E}, to solve:

00 1
E _”tUC',L dt, h UC,L)=—|(C; —
szrLl?éi} 0 ¢ ( ! t) WHERE ( ! t) 1—7( b X

L\
1+90>

and where p is the continuous time discount factor, «v is the coefficient of relative risk
aversion, y determines the disutility of labor, ¢ is the Frisch elasticity of labor supply,
and the household is subject to the budget constraint:

midt + dp;

v t

) dz’] ,  Where /Et’dz = A;.

where 7! is firm profit. So, following standard analysis, their stochastic discount

factor (or “state-price”) and labor supply are given by:

L%-HP - w 1/¢
At:aCU(CuLt): (Ct_xl—i-gO) ) L= (X)

Heterogeneous Firms: Each firm i € [0, 1] has a production function e* €t (ki)?(1i)",
where z; is aggregate TFP following a mean reverting process dz; = 1(z — z;)dt+odB?
and € is the idiosyncratic shock taking values from {er,eg}, with switching rate
A, Ay respectively. The firm can pay dividends or invest to accumulate capital but
_ xan?

faces the adjustment cost ¢(n, k) = X7,

idiosyncratic state ! = [k, €!], which evolves according to:

ki|  |ni— ok
et N 0

where J/ is the idiosyncratic Poisson process. Taking the wage rate and the households

where n is investment. So, each firm has

0

dl =d dt + | . ldﬂ. (6.3)

v Y
& — &
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SDF, A, as given, firm 7 chooses labor, [¢, and investment, n!, to maximize their price
of equity:

ltn? 0

max {po —EO/O Ate_ptﬂidt} s.t. (6.3)

where 7 := e* el (k1)?(I8)” — wili — (ni + (ni, ki) is firm profit. So, for this model g;
denotes the population density across [ki, €!] at time t, given a filtration F? generated
by the sequence of aggregate productivity shocks.

Market Clearing. Market clearing for goods, labor, and firm equity implies:

=Y / eeu(kn)* (L) — (ng + 0(ne, k)| gu(k, e)dk

€=€1,,€H

L= Y /ltk:egtkedk, E=pi

€=€[,€H

So, referring back to our general notation, the price vector that can be expressed

explicitly in terms of (z, g) is ¢ = [wy, A¢], which satisfies:

(6 ;eH/(VZtEk'6> (k E)dk> )
1te \ =

M= | 3 [ @l 0 = k) = bk 1) o )k~ XH)QO

The price of equity in firm ¢ is the value function of firm i, p; = V;'(ky, €;), which we
need to solve for numerically.
Master equation. The aggregate states are (2, g;). We let Vi(k,€) = V(k, €, 21, g1)

denote the value function in recursive form.

Proposition 3 (Master Equation). Let I*((k,¢€),z,9) and n*((k,€),z,g) denote the

optimal firm policy functions. Then the master equation (2.8) is given by:

0= —pV((k,€),z,9) + Mz, 9)m("((k,€), z,9), n"((k, €), 2, 9), k, e, w(z, g))
+ (Lo + L.+ LYV ((k,€), 2, 9)
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where the operators are defined as:

ﬁmV((k, 6)? 2 g) = akv((ka 6)7 <, g)(n*((k, 6)7 2, g) - 5k>
FXOV((R,D),29) = VI(E, ), 29))
LV ((k,6),2,9) = DV (k,€),2,9)0(z = ) + 50V ((h,€), 2, 6)0

LyV((k,€),z9)= /RngV((k‘,E),279)(b)ﬂg((b7€j)279)db

je{1,2}
where Dy, is the Frechet derivative with respect to the marginal g(-,1;) and the KFE
18:

:ug((k7 6)7 ZvQ) = = ak [(n*((kv 6)7 Zug) - 6k) g<k7 6)] + )‘<g)g(k7 g) - A(E)ga{;v €>7

The optimal firm policies satisfy:

1

) B L . - w v—1
n*((k,€),z,9) = ;(&CV((k@e),z,g) —1. U(ke),2.9) = (Vzek9>

Proof. See Appendix E.1. n

For computation, it is convenient to define the scaled value function V := V/A.

Then, the new Master equation that we take to the computer is:

LMV (ke 2z, 9) = L'V ke, 2, 9) + /XX((’:’;])) Vik,e,z,9) + 8.V(k,e z 9)d.A(z, g)o?
The main technical difference compared to the KS master equation is that the drift of
the household SDF appears in the effective discount rate. This introduces additional
feedback which makes the master equation harder train. As a result, we start the
training without x* and then introduce the term once the value function has started
to converge. We discuss the details in Appendix E.1. We train the model and get
master equation loss of 7.408 x 1076, In Figure 5, we show two plots from the solution:
the investment policy rule and the ergodic distribution for firms in the low and high

state.
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Figure 5: Tlustration of model solution for the firm dynamics model. The left panel depicts
the investment policy in the stochastic steady state and the depreciation line (dashed) as a
function of firm’s own capital level. The right panel depicts the (marginal) ergodic density
for high and low productivity firms.

6.3 Illiquid Asset Model

Setting. The setting is the same as for the Krusell and Smith (1998) model in Section
5.1 but with liquid and illiquid accounts, which are modeled in a similar way in Auclert
et al. (2024). All capital is owned by a representative financial intermediary that offers
two liabilities: liquid and illiquid accounts. Households must pay a flow cost ¥(7})
when making a (positive or negative) flow transfer 7/ from the liquid account to the
illiquid account. Households also must pay a flow cost x when holding liquid assets.
Both accounts have borrowing constraints, which we model using penalties. The
representative financial intermediary offers competitive pricing on the two accounts
so the return on the illiquid balances, the return on liquid account balances, and the

wage rate are respectively given by:
Py = ™KML — 6, re =T — X, wy=(1—a)e*KFL;* (6.4)

Household problem: Each household i € [0, 1] has three state variables: x! = [a}, a’, l1],

where a! is their liquid account balance, ¢ is their illiquid account balance, and I} is
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their labor endowment. The state evolution is:

al well 4+ real — ¢l — (Tt’ + %(75)2) 0
doi = d |at| = Foal -+ 7 dt+| 0 |dJ. (6.5)
i 0 =1

Taking the returns as given, the household chooses ci and 77 to solve:

max {EO /oo e_ptu(ci)dt} , s.t. (6.5)
0

2 7
Ct ’Tt

Master equation. The aggregate states are (z;, g;). We let Vi(a,a,l) =V (a,a,l, 2, g¢)

denote the value function in recursive form.
Corollary 1 (Master Equation). The master equation (2.8) is given by:
0=LV((a,a,l),z,q)

= —pV((a,a,1),2,9) +u(c((a,a,1), 2,9)) + La<a,¥(a) + La<a, (@)
+ (Lo + L.+ L)V ((a,a,l1),2,9)

where the operators become:

L.V ((a,a,1),2,9) = 0V ((a,4,1), 2, 9)s((a, a,1), ¢ ((a, 4, 1), 2, 9),7(2, 9), w(2, 9))

(7(z,9)a +7°((a,a,1), 2, 9))
)= V((a,1), 2,9))

1
L.V((a,a,l),z, Z—2)+ 5028”‘/((@, a,l),z,9)

L,V ((a,a,l),z Z // (a,@,1), 2, ) (b, B)pg (b, b, 1;), 2, g)dbdb

\/
Q
=
—
—~
Q
o
=
v
3
/~

where Dy, is the Frechet derivative with respect to the marginal density g(-,1;) and
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the KFE is:

where [ denotes the complement of I, where (2, g), 7(z, g) and w(z, g) solve the system

of equations (6.4), and the optimal consumption policies satisfy:

0aV ((a,1), z,9) = u'(c"((a,1), 2, 9))
o C10:V((a,a,0),2,9) = 8.V ((a,a,1), 2,9)
T ((a,a,l), z,g) - w (%V((a,d, l),z,g)

Model solution. The main technical difference is that we now have two idiosyncratic
state variables. We solve the model by parameterizing & := %—Z and v = %—‘g / %—‘; by
neural networks and solving the two Euler equations that come from differentiating
the Master Equation with respect to a and a. The policy plots are shown in Figure
6 below. Evidently, agents with low liquid wealth have a high marginal propensity
(MPC) to consume out of liquid wealth even if they have high illiquid wealth. This
is similar to to the wealthy-hand-to-mouth behavior documented by Kaplan and
Violante (2014) and related papers.
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Figure 6: Tllustration of model solution for the two account model. The top four panels de-
pict the consumption and transfer for the stochastic steady state as a function of individual
liquid and illiquid wealth. The bottom four panels plot the marginal propensity to consume
for the stochastic steady state as a function of individual liquid and illiquid wealth.
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7 Conclusion

This paper proposes a new algorithm that uses deep learning to globally charac-
terize numerical solutions to continuous time heterogeneous agent economies with
aggregate shocks. We demonstrate our algorithm by solving canonical models in the
macroeconomics literature. Although deep learning algorithms are straightforward to
describe, we find that implementing them successfully requires careful consideration
of the training details. We close by collecting some practical lessons from our experi-
ences: (1) Working out the correct sampling approach is very important. (2) Neural
networks find it easier to work with smooth constraints. (3) Enforcing shape con-
straints helps with speed and stability. (4) Starting with a simple, solvable model is
helpful for tuning hyperparameters. Ultimately, we believe this is only the beginning
what these techniques can achieve. We have demonstrated that we can now globally
solve continuous time heterogeneous agent economies with aggregate shocks, which

opens up new and exciting areas of research.
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A Supplementary Proofs For Section 2 (Online Ap-
pendix)

Proof of the Kolmogorov Forward Equation. We derive the KFE by studying the dy-
namics in a finite agent population and then taking the limit as the number of agents
goes to infinite (the so called “propogation of chaos” technique). For notational conve-
nience, in our working, we assume that all variables are continuous. The end formula
extends naturally to discrete variables if the integrals in the discrete dimensions are
interpreted as sums and all derivatives in that dimension are set to zero.

Step 1: Set up problem with a finite number of agents: Suppose that there are N <

oo agents. Then, we define the following empirical density and inner product:

AN._1N5v N -—1N i
5 (80).31) =57 2 o)

where test functions ¢(-) are bounded, twice differentiable and ¢(x), D,¢(x) vanishes
at the boundary of X', which we denote by 0X. We define the finite agent equilibrium
price as ¢~. We define the limiting cases by:

Step 2: Apply Itd’s Lemma: Taking It6’s Lemma we get that the following (since

the idiosyncratic state x! is not directly exposed to aggregate shocks):

1 N . o
~r ZD.IQ&('I;) -/uLx(Ci,:L‘;Zt,(ﬁV)dt

901,30 = 3 L doe) = 7 3

N

1 S R ;
+ 72“ {Ez(civwi’Ztaqu)Digb(wt)}dt
2N

N

1 i i
+ = N xt + S Ct>75t7ztaqze )) - Qb(xt))d(]t

+ NZngb(xt O-:E(Ct7xt’zt7Qt )dBl
i=1

where we have used the vector and trace notation (rather than the summation nota-
tion used in the main text) to streamline the expressions.
Step 3: Take the limit as N — oo: We assume sufficient regulatory that the law

or large numbers applies and so the limits as we take N — oo becomes the cross
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sectional averages:

1 X , o X
N ZD1¢($;) * Mm(czaméa Zt) qzv)dt — /X Dz¢(x) * ,ux(c <$7 Zt>gt)>x7 2ty qt)gt(x)dzdt
=1

i {Bortond >D2¢<xt>}dt

-3 / tr{ (, 21, 1), $7Zt,Qt)D§¢($)}9t($)d$dt
1

N (¢($i+<z(0iva7i,zt,@iv)) — ¢(xy))dJ;

||Mz

o [ A 206 + 6,290, 20)) — 0)gi (o) dodt

N

1
N D, xt) ax(ct,a:t, 24, Gy )dBZ —0
1

1=

and so we get:

[/ Dogp(x (c*(, 21, 91), xazt,Qt)gt(l’)dl} dt
+ = 5 Uxtr {Zx(c (x, 24, G¢), x,zt,qt)ngﬁ(iv)}gt(ff)dif} dt
+ UX A, 2)((x + <o (¢ (2, 20, ), T 200 41)) — ¢(x))gt(x)dx} d(A.1)

Step 4: “Intregration by Parts”: By the multidimensional integration by parts (for-

mally the Stokes-Cartan theorem) and the assumptions on ¢(-), the first term on the
RHS of (A.1) can be expressed as:

/ Dayop(x (" (@, 21, 91), Iaztvqt)gt(l')dl'] dt
= [/ax O pe (™ (2, 2, 9t), T, 20, @) i () d — /Xdiv (2 (¢ (2, 20, 90), @, 20, @) g ()] () di | dt

= — [/Xdiv [z (c* (2, 2¢, 91), @, Zt?Qt)gt(l')]Qb(l')dx] dt

Applying Stokes-Cartan theorem twice, the second term on the RHS of (A.1) can be
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simplified as:

;(/ {D2 (E (c*(x, 24, 1), x,zt,qt)gt(x)>}¢($)dx> dt

Finally, the third term on the RHS of (A.1) can be expressed as:

[/X Az, 2)(d(z + <o (@, 20, 1), T, 20, 1)) — qS(x))gt(x)dm} dt
— [/X Mz, 2)d(x + (¢ (@, 2, g1), @, 20, 1) ) 9o () d — /X/\(:U,zt)gb(a:)gt(x)dx} dt.

Let ¢ be defined to be such that (i.e. < is part of the inverse satisfying the following
relationship):

.T+§x(C*(ﬂT,Z,g),ZE,Z,Q(Z’,g)):y < x:y_é(yazag)a

where we have plugged in ¢ = Q(z, g) to streamline notation. Now, make the change
of variables. We have that:

dt

[/X AW 20) W) ge(y — <y, 20, g — DyS(y, 21, g¢)|dy — /X Az, 2)6(x) gi(x)dx
- U){A(x,zf;)@t( $(x, 2z, ) — Dol(, 21, 90)| — g ))(b(x)dx} dt,

where |I — D,<(x, 2, g¢)| is the determinant of matrix I — D,$(x, 2, g;). Putting
everything back together, we get that:

| (@) (a)dz
. / (= div (e (22 20,90, 20 Qs 90l ) )
i {D( (@ 1,90: 7,20 Qs 9)) (@) ) o)
+ [, (M) (oo = <290 = Dok, 2,90)] = (@) ) o)

Because this equation must hold for all test functions ¢, it follows that g, must satisfy

the KFE (2.7) stated in the main text for almost all z € X
[
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B Details on Section 5 (Online Appendix)

Parameters
Parameter Symbol Value
Capital share o 1/3
Depreciation 4] 0.1
Risk aversion 0 2.1
Discount rate p 0.05
Mean TFP Z 0.00
Reversion rate i 0.50
Volatility of TFP o 0.01
Transition rate (1 to 2) A1 0.4
Transition rate (2 to 1) Ao 0.4
Low labor productivity [ 0.3
High labor productivity ly T4+ X/A(1—ny)
Penalty Function Y(a) —3k(a — ap)?
Penalty parameters ap 1.0
Penalty parameters K 3.0
Borrowing constraint a 0.0
Minimum of assets (for sampling) ymin 106
Maximum of assets (for sampling)  @ae 20.0
Minimum TFP (for sampling) Zmin —0.04
Maximum TFP (for sampling) Zmaa 0.04

Table 5: Parameters for Krusell-Smith Model from Section 5.3.1

B.2 Detail on the Master Equations

In this subsection of the Appendix, we describe the precise master equations that we
use to train the neural network for each approach. Let W ((a, 1), z, @) := 9,V ((a,1), z, )

denote the derivative of the value function with respect to a.
Finite agent approximation: In this case, we replace the distribution by the positions

of the agents ¢ = {(a’,1") };<; where I = 41 agents. We use the envelope theorem to

take the derivative of the HJBE. The resulting finite dimensional master equation is
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given by:

0= LW((a, 1), 2,0) = (r(= ™) — )W (@', 1), 2, §) + Loza, Outh(a’)
+ (‘Cm + ‘CZ + ﬁg)W((a’iv ll)? 2, ()5)

where the operators become:

[,xW((ai, li), z,Q) = s((ai, li), é*((ai, li), z,9),r(z, @*i),w(z, gbfi))(?aiW((ai, li), z, Q)

+ M) (W((d' 1), 2,¢) = W((a', '), 2,2))
LV (a1, 2,.8) = 0. (0" 1), 2, 9)n(= — 2) + 50*0W (0, 1), 2,9)
LWV ((d, 1), 2,6) = > s((a/, V), & (a7, 1), 2,¢),7(2, ¢ 77), w(z, §77))0u W ((a', 1), 2, §)
J#i

AW (W((a', 1), {(a?, ), 2,677}) — W((a, 1), 2, )

Discrete state space approximation: In this case, we replace the distribution by its
values at the points &;,...,&y on the grid. More specifically, we take N = 186
points, and we consider a discretization a; < --- < agg of the a-axis. We then denote
&1 = (a1,01), ..., &3 = (a3, lh), &oa = (a1,l2),...,&1s6 = (ag3,lo) € R® We use a
uniform grid and denote Aa = as —a;. For ease of presentation, we write ¢, ; with a
two-dimensional index (m, j) in place of ¢, with a linear index n =93 - (j — 1) + m.

Recall that the dynamics of the discrete distribution take the generic form (3.3).
In our implementation, we use the finite difference scheme proposed by Achdou et al.
(2022a). The KFE is replaced by the following finite difference equation:

d@m,j,t = M¢7m7j<zta @t)dta m = 17 LR 937] = 17 27
where the drift at point (m, j) is defined by

Hom(2 @) = — (0ul8(2,8)) © @)y + M5 Ps — M) P (B.1)

Here, j = 2 for j = 1 and j = 1 for j = 2, the vector of saving flows s(z,$) € R3*2
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is
Ak

8m.j(2, ) = s((am, 1), & ((am. ), 2, ), 7(2, 9), w(z, ),

and the first order derivative is approximated using an upwind scheme:

+ ~ + oA _ ~ A
Smfl,j(pmfl,j - Sm,jgpm,j 4 Sm+1,j()0m+1,j - Sm,j(pm,j

(aa[s @ @])mﬂ = ACL ACL

where (s,, ;)" and (s,,;)~ denote the positive and negative part of s,, ;, respectively,
and we use the convention that the component of a vector is zero if its index is outside
the boundaries of the original vector (which can happen for m = 1 or m = 93).

Relative to the generic finite difference scheme presented in Section 3.2, the variant
here is simpler in two regards. First, there is no need to define a second-order finite
difference operator Oua because there are no idiosyncratic Brownian shocks. Second,
we have added here the jump term directly into equation (B.1) without defining an
interpolation operator A ) for evaluating the density at shifted inputs. This is
possible here because jumps only switch the the [-value, so that the post-jump state
will be on the grid whenever the pre-jump state was (and vice versa). There is
therefore no need to interpolate off the grid.

Similarly to the finite agent approximation, the finite dimensional master equation

is given by:

0= ‘CW((CL: l)’ <, 95) = (T(Za @) - p)W((CL, l)’ <, ‘75) + 1a§azbaa¢(a)
+ (Lo + L.+ LOW((a,1), 2, §)

where the operators become:

LW ((a,0),2,9) = s((a,1),&((a,1), 2, ). 7(2, ), w(z, §)) W ((a,1). 2, §)
l

~ 1 ~
LW((a,l),z,¢) =0, W((a,l),z,p)n(z — 2) + 50'28ZZW((CL, 0),z,¢)
93
‘CQW((a7 l)? Z? @) = Z ,U@,m,] (Za Sa) acpm ]W<<a7 l)a Z> @)
j=12m=1

where Q@m’jW denotes the partial derivative of W with respect to the coordinate

(m, j) of ¢, using two-dimensional indexing of ¢ as above, and where i3, (2, ®) is
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as defined in equation (B.1).

Projection approximation: In this case, we replace the distribution by projection

coefficients ¢ € R® onto a basis by, by, ..., bs of 6 basis functions. We choose the basis

functions as follows:

(i)

(iii)

We start out by solving the steady-state model with finite difference methods
on a grid of 101 equally spaced grid points in the a-dimension. This finite-
difference solution yields a 202 x 202-matrix that serves as a finite-dimensional

approximation to the steady-state KFE operator L5

In a first step, we
construct the basis of eigenfunctions described in the main text and discussed in
more detail in Appendix C (using K" = pKF 5$). Practically, we approximate
the eigenfunctions by eigenvectors of the finite difference KFE matrix. We pick

a total of 7 eigenvectors, which results in a preliminary basis 53,59, ..., b2.

In a second step, we impose the restriction that the marginal distributions in
the I-dimension are always in line with the ergodic distribution of the I process.
This restriction ensures that effective labor is constant over time. It also reduces

the dimension of the basis by 1. After imposing the restriction, we are thus left

with a reduced basis by, by, .. ., by, where by = 58 and by, ..., bs are each linear
combinations of the original eigenfunctions 59, ... 0.
In a third step, we make a change of variables that rotates the basis bo, b1, ..., bs

but leaves the set of densities that can be approximated unaffected. Specifically,

we first find the representing vector in span{gl, e 55} for the linear functional

K(g) := /ag(a,ll)da—ir/ag(a, ly)da,

call it b; (existence is ensured by the Riesz representation theorem). We then
select four more vectors out of by, ..., bs such that together with b; we obtain
again a basis of the space and then project those four vectors onto the orthogonal
complement of b;. Call the resulting vectors bs, ..., bs. Also define by := by. For
our projection of the distribution, we work with the resulting basis by, ..., bs.
This rotation helps us in sampling because the coefficient ¢; on by fully controls

the aggregate capital stock implied by a given distribution approximation vector
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$,18 50 that it is relatively straightforward to implement a variant of moment

sampling.

For the law of motion of the distribution approximation ¢, we adapt the generic
approach outlined in the main text as follows for the KS model. We choose a single
“informative” statistic whose evolution we seek to match perfectly, the aggregate
capital stock. This is motivated by the well-known fact that this is the most important
aspect of the distribution in the KS model. Given our particular basis, matching
this dimension of the distribution evolution effectively determines the evolution of
p1. To determine the evolution of the remaining components ¢, ..., 05, we use an
“uninformative” uniform discretization of the individual state space by choosing a
101-point grid in the a-dimension and require that the KFE is well-approximated (in
a least-squares sense) on the resulting 101 x2-point grid of (a,[)-pairs. In total, this

means we choose 203 “test functions”. The first is the “informative” test function

o1(a,l) = a,

which selects the first moment in the a-dimension, i.e. K(g). The remaining test

functions are the Dirac d-distributions

Otam om)s M < 102

(bm = )
5 m > 103

Am—103,2)»

where ay < a; < --- < ajgo denotes the chosen grid points. Relative to the generic
procedure outlined in the main text, we also choose to use a weighted least-squares
procedure when minimizing the residuals that puts a very large — in fact, infinite —
weight on the ¢;-residual so as to match the capital evolution perfectly. The weight
on all other test function residuals is chosen to be the same.

While the previous description implies a precise definition of jig 1, ..., fte5 (up
to the approximation of integrals on the discrete grid), the specific nature of our
approximation allows us to compute many of the test function integrals analytically.
In practice, we therefore compute 51, ..., ftg 5 in a two-step procedure as follows:

First, we determine the law of motion of the coefficient ¢, that governs the evo-

8By construction, the basis vectors ba, ..., bs are orthogonal to b;. Because b; is the representing
vector for the K-functional, K (bs) = --- = K(bs) = 0, so these components do not contribute to the
mean of the distribution.
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lution of aggregate capital K;, so that we match the law of motion of K; exactly.

Specifically, we start by computing the forward evolution

K,

- -3 / o*(a, 1) G () (a, 1) da — 6K (G(P)),

Zt=Z,gt:é( ) 1= 12

:LLK(Zv @) =

where the integrals [ ¢*(a,l;)G(@)(a,l;)da are approximated using quadrature over
the 101-point grid in the a-dimension on which the basis functions are known. We

then determine the law of motion for ¢, as follows:

For the remaining components (o, ..., 95, the d-test function choice implies that
vector on the left-hand side of the regression that determines pigo, ..., g5 is given
by the vector of KFE drifts at the 202 (a,)-grid points. Because we know the basis
functions, and hence the density §, only on the grid, we inevitably have to approximate
the derivatives in those KFE drifts somehow. As in the discrete state space method,
we choose a finite difference method to do so. Specifically, we first compute the
finite difference approximation of the KFE precisely as in the discrete state space
method on the 101 x2-point grid on which the basis functions are known. Call the
resulting 202-dimensional vector ,ufs (2,§), where § = G(p) is the density § = G()
on the 101 x2-point grid (which corresponds to the distribution approximation in the
discrete state method)." We then determine the drifts ps (2, @), ..., pia5(2, ¢) as the
coefficients of a linear regression (orthogonal projection) of z2%(z, G(9)) on the basis
vectors bs, ..., bs.

With these choices, the master equation can be written as:

0=LW((a,l),2,¢) = (r(z,¢) — PpW((a l) 2,@) + La<a,0at(a)
+ (L. + L, +£) ((a,1),z,¢)

98pecifically, this means that if ug 9(2,¢) denotes the drift expression for the distribution ap-
proximation in the discrete state space method as defined in equation (B.1) (but for the different
grid used here), then we define ,u?s(z,g) = ugs(z,g). Note that, in the context of the discrete
state method, the vector ¢ describes the values of the density on the 101 x2-point grid, so plugging
in g for it is a well-defined operation. However, in the present context, ¢ has a different meaning
(coeflicients in the projection), so that we use the notation u?s(z, §) instead of ugs(z, g) to avoid
any confusion.
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where the operators become:

LW ((a,1),2,8) = s((a, l),é*((aa 0),2,¢),r(z,@), w(z ¢)0.W((a,1), z,$)
l

LW ((a,1),2,¢) = 5W(( ), 2,@)n(z — 2) +

B.3 Implementation Details

In this section, we go through the implementation details for each of the different

approaches.

B.3.1 Network Structure

Finite Agent Agent Approximation: We use a fully connected feed-forward neural
network with 5 layers and 64 neurons per layer. We use a tanh activation function
between layers and a soft-plus activation at the output level. We initialize the neural
network so that W(a,-) has an exponential shape with negative exponent. This is

done through a pre-training phase.

Discrete State Space Approximation: The neural network for approximating W =09,V
combines three steps to map the input data X := {z,z, ¢} into an output W’(X7 Ow).
We describe these steps separately:

In a first step, an “embedding” network transforms the component ¢ into a 10-
dimensional output ¢’ by feeding it through a fully connected feed-forward network
as described in Section 4.1. This embedding network has 2 layers and 128 neurons
per layer. We use a tanh activation function in the hidden layers and the identity
function in the output layer. Denote by ©f, the collection of parameters for this
network.

In a second step, we apply a recurrent network as proposed by Sirignano and
Spiliopoulos (2018) to the modified input data X' := {z, z, '}, which results from X
by replacing the distribution approximation ¢ with the output ¢’ of the embedding
network. Specifically, the structure of the Sirignano and Spiliopoulos (2018) network
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is as follows:

B0 — ¢(0)(W(O)X’ + () ... Hidden layer 0
f<1> — M (Wf,a RO 4 M7 4 bf7<1>) ... Hidden layer 1
=M (W ( WRO 4 oM X7 4 pol ) .. Hidden layer 1

= oM (WT“ WO+ Ur X 5 ) ... Hidden layer 1

= o (W= <°>) + USDX 4 b)) ... Hidden layer 1

A =(1—¢gM)yes® 4 fO.p0 ... Hidden layer 1
FOD = gD (WHIRHD 4 gIED R 4 phn) ... Hidden layer H
gt — () (Wg< VRH=D) 4 ra(H) {7y bg,(H)> ... Hidden layer H
p(H) — () (Wncm RHEL) ) %7 bMH)) ... Hidden layer H
sH) — () (W&(H) (rt) @ W=Dy 4 =D X7 4 b57(H)> ... Hidden layer H
A = (1 — gDy @ gD 4 fUD . p(H=1) ... Hidden layer H
o = WWHHDpH) 4 p(HFD) ... Output layer

Yy — S (o) ... Output

Here, {h)}o<;<y denote the H+1 hidden layers and { f®), g® +® sO}, .y are aux-
iliary variables required to compute the neuron value in each layer. W), iz () W
and {U50) ys® yr®) US’(i)}ISZ-SH are the weight matrices of the network, whereas
b© and {bH® 5O @ psD}, iy are the biases. The operator ® denotes the
element-wise product (Hadamard product) of vectors. We choose H = 3 and 100
neurons per layer, which means that the dimension of each of the vectors h(), (&
g, @ and s is 100. We use a tanh activation function in the hidden layers and
an elu activation function in the output layer to ensure positivity of the output. The
trainable parameters O, of this network consists of the collection of all weights and
biases of the network.

In a final third step, we transform the output Y from the recurrent network into

the approximate value for W as follows:

W = }A/(CL() + a)_”
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Here ay and 7 are non-trainable parameters. The additional factor (ay + a)~" is
motivated by the hyperbolic shape of the marginal value function. Its inclusion helps
improving the overall accuracy of the approximation for a given neural network size.
We make the selection ap = 10 and 7 = 0.5.

The trainable parameters of the network bW consists of the collection Oy =
{©%,, 07} of all trainable parameters from the first and second step. We initialize all
bias parameters to zero and all weight parameters randomly according to a uniform
Xavier initialization (Glorot and Bengio, 2010).

In addition to the neural network for W, we also introduce an auxiliary network for
the consumption function ¢*, (C(X :0.). The structure of C precisely mirrors that of
the network for W (including the number of layers and neurons in each sub-network),
except that we omit the third step. For initialization of the parameters ©., we follow

the same approach as for Oy .

Projection Approzimation: We use the same network structure and parameter initial-
ization as for the discrete state space approximation. The only difference is that we
choose a smaller embedding network, both for approximating W and for approximat-
ing ¢*: instead of 128 neurons per layer, the embedding network for this approximation

has only 64 neurons per layer.

B.3.2 Sampling

Finite Agent Approzimation: We sample points of the form {(a’,n"), (a/,n?);e1-1)}
on the interior of the state space. For the idiosyncratic variable, a’, we sample using
an active sampling technique similar to those developed by Gopalakrishna (2021) and
Lu et al. (2021). We start active sampling after 2,000 epochs to balance speed with
accuracy.?’. Once we start active sampling, the interval [@min, Gmae] is evenly parti-
tioned into 2* subintervals. We calculate the residual error in each subinterval then
add 2* points to the subinterval with the largest residual, 23 points to the neighboring
subinterval with the largest error, and 22 to the other neighboring subinterval. We
sample the aggregate variable z uniformly from interval [z, Zmaez|. For sampling
the population of agents, (a/,n’);ec(1—1), we first generate a random interest rate from

a uniform distribution on [ry, 74|, with 7, = 0.01,r,, = 0.05. We then generate a

20The loss has a steeper drop after we start active learning in the 2000th epoch, as shown in Figure
9.
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random distribution of agents from a Latin hypercube on [ain, Gmaes] and scale their
individual wealth so the equilibrium interest rate is the randomly drawn interest rate

for the drawn aggregate TPF z.

Discrete State Space Approximation: We first sample points of the form (a,$, 2)
randomly and then construct the full sample for points of the form ((a,l),,z) by
using each originally sampled point twice, once in combination with [ = [; and once in
combination with [ = l;. We sample the three dimensions of (a, @, z) independently

as follows:

e We sample a from a uniform distribution over the domain [a,n, @maz| (Without

active sampling).

e We sample z from a uniform distribution over the domain [z,in, Zmaz] as for the

finite agent method.

e For the sampling of ¢, we use a mixture of two sampling schemes, (i) a variant
of mixed steady state sampling and (ii) ergodic sampling based on the current
approximation for W. For sampling scheme (i), we use a “degenerate” mix-
ture based on just a single steady-state solution (for z = 0). Denote by §**
the vector of steady-state density values on the discrete state grid. We take as
wi§°®(a4,li)

S wig (ayly)]

distribution over an interval of the form [1 — d,, 1 + d,], with d, € (0,1). We

gradually increase the proportion of the sample that is according to (ii) from

sample points @(a;, ;) = where the w; are i.i.d. with uniform

0% to 90% during training.

Projection Approzimation We follow precisely the same sampling approach as in the
discrete state space approximation, except for the distribution dimension ¢. We
therefore only discuss the latter here. We sample the first component of the distri-
bution, ¢, separately as this component exclusively controls the aggregate level of
the capital stock (compare Appendix B.2). We sample aggregate capital K from a
uniform distribution over [0.9K°%, 1.1K°%], where K** is the steady-state level of cap-
ital in the model without common noise and z = 0, and we adjust ¢; to match the
sampled capital stock values. We sample the remaining four components o, ..., @5

by combining uniform sampling from a hypercube centered around zero and ergodic
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sampling. We gradually increase the proportion of ergodic sampling from 0% to 80%

during training.

B.3.3 Loss Function

For all three approximation method we impose penalties to impose the shape con-

straints 9,W < 0 and 0,W < 0 by choosing the shape error as follows:

1

|51

£5(0", 5") =

> (Jmax{0.W(a,1, z,¢;0"),0}” + | max{0.W(a, , 2, ; ©"), 0}?)

(azl»Z7¢)GSn

We combine this with the equation residual error £¢(©",S™) for the total error
E(O",8™) as described in Algorithm 1. We choose as weights k¢ = 100, = 1
for the finite agent method and x° = k* = 1 for the other two methods. Ultimately,
we find that the relative weights of the loss components only matter in early training
when the shape constraints are occasionally violated. In late training, shape con-
straints are typically always satisfied, so that the weights x°, k* have little relevance

for training.

B.4 Calibration

As was discussed in the main text, a potential benefit of deep learning algorithms is

that we can include the parameters, ¢, as additional inputs into the neural network:

and then train the neural network using sampling from both X and (. We can then
use V to calculate the moments for different parameters and calibrate the model.
We illustrate this technique for the finite agent method by calibrating the Krusell
and Smith (1998) model to match a stochastic steady state capital-to-labor ratio of
5.0. We do this by including the borrowing constraint a;, as an input into the neural
network, training the model randomly sampling ay, from [0, 1.5], and then using the
trained model to solve for the a; that generates a stochastic steady state capital-to-
labor ratio of 5.0. We show the results in Table 6.
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K/L
Target Model  ay
5.0 5.0 1.082

Table 6: Neural Networks’ results for Calibration

B.5 Steady-State Solution with Fixed Productivity

Figure 7 plots the steady state consumption policy rule, value function derivative,
probability density function (pdf), and cumulative distribution function (cdf) for the
solutions from the finite agent, discrete state space, and finite difference methods.

Evidently, the neural network solutions align very closely to the finite difference so-

lution.
2 10
1.5+
o 1 CNNFA(q ., 555) | N
CNNFA(q py, 555) =
CNNFS (g, §95)
057 / CNNFS (g, ny, 595)
L - Cl”l)(m ni, SSS)
— — CTP(a,ny,s%%)
0 L
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a a
0.08 — 0.5
PAfVNEA (g, 59)
pdf "N (a, ng, 559) 0.4
0.06 pdi;\"J-xS‘(a7 ni, SSS) 4 N
PAfNNES (a, 1y, 595) 03
o FD S8 O . o ]
A 0.04 pjjf’[ﬂuga,nl, Sss; E Cdef\;FA(a’nl’ 355)
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Figure 7: Comparison between the neural network and finite difference solutions for the
Aiyagari model. The top left plot shows the consumption policy. The top right shows the
derivative of the value function, the bottom left shows the pdf, and the bottom right shows
the cdf. The labels “NN,FA”, “NN,FS” and “FD” refers to solutions from the finite agent
neural network, the discrete state space neural network, and finite difference respectively.
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B.6 Transition Dynamics for MIT Shocks

We now consider the transition path following an unexpected shock to aggregate
productivity (a so-called “MIT” shock). In principle, an important advantage of
having a global solution, i.e., ¢* as a function of the distribution, is that we can
solve for the transition path without a “shooting algorithm”, as is commonly done
in the finite difference literature. This is an advantage because shooting algorithms
can be unstable, particularly for systems with a large number of prices that require
complicated guesses for the price path. However, in practice, attempting this only
makes sense for the finite agent approximation since the other methods require ergodic
sampling during training and so have difficulty with unanticipated shocks. For this
reason, we focus on the finite agent method in this section.

In order to compute the response to an MIT shock we need to compute the evo-
lution of the distribution. This is complicated for the finite agent method because
the neural network policy rules are functions of the positions of the N other agents
rather than a continuous density. To overcome this difficulty, we deploy the “hybrid”
approach described in Algorithm 2 that uses the neural network solution to approx-
imate a finite difference approximation to the KFE. Let a = (a,, : m < M) denote
the grid in the a-dimension. Let g = (gmjt : m < M) denote the marginal density
at labor /; on the a-grid and g, denote the density. At each time step, our method
draws N, different samples of N agents from from the current density g;. For each
draw k < Ny, denoted by ¢F = ((a;,1;) : 1 < i < N), the KFE is replaced by the

following finite difference equation:
dgm,js = Hgm(Pt)dt,  m <M. j=12, (B.2)
where the drift at point (m, j) is defined by

P g (%) = — (0a[s(2")) © gD + M) G5 — A1) Gims-

Here, j = 2 for j = 1 and j = 1 for j = 2, the vector of saving flows s(¢*) € RM*2 ig

SmJ(Sak) = S((am’ lj)> é*((am’ lj)> @k% T(gﬁk), w(@k»,
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and the first order derivative is approximated using an upwind scheme:

+ + - -
Sm—1,j9m—1,5 — Sm, j9Im.j + Sm+1,j9m+1,5 = Sm j9m.j

Aa Aa

(als © gl)m,i =

where (s,, ;)" and (s, ;)~ denote the positive and negative part of s,, ;, respectively,
and we use the convention that the component of a vector is zero if its index is outside
the boundaries of the original vector (which can happen for m =1 or m = M). From
this approximation we can calculate the transition matrix Ay, for the finite difference

approximation at the draw ¢*.

Algorithm 2: Finding Transition Path by Neural Network: Aiyagari case
Input : Initial distribution gg, neural network approximations for
consumption and prices (¢, 7, ), number of agents N, time step
size At, number of time steps Ny, number of simulations Ny;,, grid
a = {a,, : m < M} for the finite difference approximation.
Output: A transition path g = {g, : t = 0, A¢t, ..., NpAt}

forn=0,...,Nr—1do
for k=1,..., Ny, do
Draw states for N agents {¢©F :i=1,..., N} from density g; at
t = nAt.
Given state ©*, compute equilibrium return 7(¢*) and wage w(p").
At each grid point a,, € a, calculate the consumption &((am,, 1), "), Vi.
Construct the transition matrix Ay using finite difference on the grid
a, as described by (B.2) and the subsequent equations.

end

Take the average: A, = ﬁ Zévjf” A .

Update g; by implicit method: g;1a; = (I — A At)"'g,.
end

This approach is very different to the finite difference approach in Achdou et al.
(2022a), which is summarized in Algorithm 3. This is because our neural network
transition paths do not require an outer “guess-verify” loop, as in the Achdou et al.
(2022a) shooting algorithm.
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Algorithm 3: Finding Transition Path by Finite Difference

1. Guess the path of equilibrium interest rate 77, then solve HJB, with terminal
condition: v(a,l,T) = v(a,l)

2. Solve the policy function ¢(a, ).
3. Solve the forward equation, with initial condition go(a,!).

4. Calculate the capital held by the whole economy: >;c013 J,° agi(a, 1) = Ky,
then calculate the implied interest rate by " = Ox F'(Ky, L) — 6, for every
t €10,77.

5. Update the path to be Ar{ + (1 — )7}, repeat 1-4 until ||r* — r"|]o < €.

We compare the neural network and finite difference transition paths in Figure 8
below. In this numerical experiment, we train our neural network at z = 0 and we
start from an economy in its steady state with productivity z; = —0.10 for ¢ = 0.
At t = 07, an unexpected positive productivity shock brings z from —0.10 to z; = 0
permanently. We solve for distributional dynamics using Algorithm 2 and Algorithm
3 using the steady state at z = —0.10 as the initial condition. We plot the percentage
change of capital, capital return and wage evolution respectively in the first row and
the second row of Figure 8. The difference between the neural net transition paths
and finite difference transition paths are less than 0.1%. The lower panels of Figure 8
compare the neural network and finite difference probability densities at time t = 15

and t = 30, which are also very similar.

B.7 Additional Details on Simulating the KS Model

We simulate from the KS model using an extended version of Algorithm 2 that in-

corporates aggregate shocks. We describe this in Algorithm 4.

C Additional Details on the Eigenfunction Basis
for the Projection Technique (Online Appendix)

We would like to choose a basis such that just a few basis functions are enough to
provide a good approximation. The key idea to achieve this is to track the slow-

moving or persistent dimensions of ¢g; while neglecting those dimensions that mean-
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Figure 8: Comparison between neural network and finite impulse response for the Aiyagari
model. The top left plot is the TFP shock path, the top right panel is the aggregate relative
capital change, the middle left panel plots the relative capital return change, and the middle
right panel plots the relative wage change. The bottom left and bottom right are snapshots

of probability density at ¢ = 15 and ¢t = 30.

“NN, FA” refers to the finite agent neural

network code, and the “FD” refers to the finite difference code. Subscript init is the initial
value at the steady state z = z(0).



Algorithm 4: Finding Transition Path by Neural Network: Krusell Smith
case
Input : Initial distribution, neural network approximations to the
consumption rule ¢, and pricing functions (7,1), number of agents
N, time step size At, number of time steps N7, number of
simulations Ny, grid @ = {a,, : m < M} for the finite difference
approximation.
Output: A transition path g = {g; : t = 0, A¢t, ..., NpAt}

forn=0,...,Nr—1do

for k=1,..., Ny, do

Sample ABY from normal distribution N (0, At), construct TFP shock
path by: 2z a¢ = 2t +1(Z — 2) + cABY.

Draw states for N agents {©F :i=1,..., N} from density g; at
t = nAt.

Given state (2¢4as, ¢F), compute equilibrium return #(2zy4 a¢, ©F) and
wage (214 ar, ¢1)-

At each grid point a,, € a, calculate the consumption
é<<am7 l)u Ri+At) 901]‘?)7 vi.

Construct the transition matrix Ay using finite difference on the grid

a, as described (B.2) and subsequent equations but with the z; state
added.

end

Take the average: A, = % S i Ay ke

Update g; by implicit method: giyn = (I — /_l;rAt)*lgt
end

revert fast. To understand why, recall that the only reason the distribution appears
in the state space is because it helps the agent forecast future prices ¢;. Components
that mean-revert fast carry only little information about future prices beyond a short
time horizon. Neglecting them induces a comparably small error into the agent’s
forecasts.

The persistent dimensions of the distribution are related to certain eigenfunctions
of the differential operator characterizing the KFE (2.7). We can rewrite this equation

as

dgi(z) = (L] gi) (x)dt
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where, for generic distribution f and point x,
N,
‘Cf(F Z T M$] [L’ Zt7gt) X, Zt, Q(Ztagt))f(x)]

Ny

; Z xj,xk ,]k (xvztagt)ax7ztaQ(Ztagt))f(x)]
k;:

)\(f(l‘ - §(ZE, Ztagt))u- - Dxé(xa Ztagt)’ - f(l'))

Notice that £LEF is a linear differential operator that generally depends on time and
is stochastic due to the implicit dependence on z; and g;. Constructing a (fixed) basis

£KF

based on the eigenfunctions of is therefore not directly possible because the set

of eigenfunctions would itself be time-dependent and stochastic.

Instead, our construction is based on a related time-invariant operator .t
could take many forms. The simplest approach and the one we follow in our algo-
rithm is to use £ = LEEss wwhere we define £57% in analogy to LXF but for a
simplified model with common noise set to zero, o = 0, and under the assumption
that the aggregate states z; = z and g, = ¢*° have reached a steady-state. Another
natural option would be to let L*" be the KFE operator that results from a linear
perturbation of the model, but this would require solving an auxiliary problem first,
in addition to the steady state problem, in order to obtain 2 n any case, we
assume that £ g% = 0.2!

Irrespective of the precise choice of ZKF, there is a heuristic element in our basis
construction that lies in the presumption that broadly the same dimensions of the
distribution are relevant for the dynamics described by L5 and the true dynamics
described by £LEF. While generally plausible for the choices of L™" discussed above, if
this requirement is not satisfied, then our proposed basis may not track the persistent
dimensions of the true KFE dynamics well making the basis choice “less efficient”,
so that we may need a larger number of basis functions /N to achieve a good overall
approximation quality.

Let us consider the eigenfunctions {b; : i > 0} of %" with corresponding eigen-

21 This is satisfied for both options for ZKF discussed here. More generally, we can simply define

—KF
g°° to be the steady state with respect to £
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values denoted by {\; € C : ¢ > 0}. They satisfy:

—KF

Suppose ¢*° is the unique stationary distribution and the dynamics described by
the KFE are locally stable around ¢®*. Then the eigenvalue \y = 0 exists and its
associated eigenfunction is, up to scaling, by = ¢°°. All remaining eigenvalues satisfy
RA; < 0, so that these components of the distribution mean-revert to zero over time.
Furthermore, a smaller R)\; is associated with a faster speed of mean-reversion. To
be precise, suppose g = ¢°° + 272, p;.b; is the time-t distribution expressed as a
linear combination of all the eigenfunctions and suppose the time evolution of g; is
described by the differential operator T hen,

= d‘Pi,t
dt

_ g _ px

F SKF o5 = AKF 55 e
= G=L""g"+> 0L bi=g"+ Y pis\ib;

i=1 =1

=L

gSS + bz

=1
Since the b; form a basis, the previous equation implies a system of ordinary differ-

ential equations for the coefficient functions ¢; ¢, 7 > 1:

d%’,t

dt it

The solution is given by ¢;; = p; o€, and therefore

g =9"+ i i 0™ by, t>0. (C.1)
i=1

Because R)\; < 0 for ¢ > 1, all terms in the series on the right decay to zero as
t — oo. Components corresponding to eigenvalues \; with very negative real parts
decay at a faster rate. As such, deviations from the stationary distribution g** have
a greater persistence if they are in the direction of eigenfunctions corresponding to
eigenvalues that are (negative but) close to 0. We therefore expect that a finite basis
of eigenfunctions will provide a good approximation of the infinite sum if there are

only a few “significant” eigenvalues that are close to 0.
The previous considerations motivate our basis choice in the main text. To be
precise, that basis choice means the following: we order with descending real parts,

Ao =0>RN\ >R\ > ..., and choose by, by, ..., by as the eigenfunctions correspond-
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ing to the first N 4 1 eigenvalues in this ordering as our basis. We remark here also
that this choice of by, by, ..., by satisfies the required properties stated in equation (3.4)
of Section 3.3. This is clear for n = 0. For n > 0, it follows form the fact that the
operator L™ describes a mass-preserving evolution, which is only consistent with

asymptotic decay over time if the integral is zero.

Proof of Proposition 1. The “only if” direction of the proposition essentially follows
from equation (C.1) derived in this appendix if we set £ := £XF. Note that the
additional assumptions made in the text, specifically that (i) ¢*° is the unique steady
state of the operator and (ii) eigenvalues have negative real part, have been mentioned
in the text only to make statements about the decay of certain components in the
formula but are not necessary for the derivation of the formula itself. Therefore, the
formula holds also under the assumptions of Proposition 1 if g, satisfies the KFE for all
t > 0. We now use this fact to prove the first direction in the equivalence statement.
If g, satisfies the KFE, then, as just observed, it must also satisfy equation (C.1).
Furthermore, because ¢; — ¢*° € span{b,...,by}, it must be that ¢, = 0 for all
i > N. Hence, the infinite sum in equation (C.1) collapses to the finite sum in
equation (3.6) stated in the proposition.

Conversely, if g; satisfied equation (3.6) for all ¢, then taking the time derivative
yields

dgt_ al it _ al \it pKF7 _ pKF al it _ pKF
7—2%,06 )\ibi—Z%’,oe LY =L Z‘Pz’,oe bi | = L7 g4

dt i=1 i=1 i=1

=gt—g°° by (3.6)

Consequently, g; also satisfied the KFE for all ¢ > 0. n

D Robustness (Online Appendix)

This section provides additional robustness checks for our solution techniques. For
each method, we run the code 20 times with different random seeds and compare

similarity of the neural nets at the end of the training.

Finite Agent Approach. Figure 9 shows the training losses (i.e., the residual of the

PDE over distributions sampled during training) as a function of the training epoch.
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Robustness Check: Krusell-Smith Model (Losses)
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Figure 9: Training Loss vs Epochs Plots (Finite Agent Method). Shaded areas are
80% confidence interval.
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Figure 10: Training Loss vs Epochs Plots (Finite State Method). Shaded areas are
80% confidence interval.

Each epoch corresponds to 16 steps of stochastic gradient descent. Figure 12 shows
the relative standard deviation for dV and consumption as a function of a, at each of
the two possible values of labor [. We generate the ergodic distribution of (z,¢g) by
simulation. We then draw 1000 samples of 40 agents from the ergodic distribution
conditioned on z = 0. We use each trained neural network to evaluate dV" and C' (on
a grid of 21 points between a = 0 and a = 10) for each 40 agent sample and then

take the average.

Discrete State Approach. Figure 10 shows the training loss (i.e., the residual of the
PDE over distributions sampled during training) as a function of the training epoch.
Here, one epoch corresponds to 20 steps of SGD. Figure 13 shows the relative stan-
dard deviation for dV and the consumption as functions of a, in each of the two

possible values of y. Again, we used a grid of 21 points between a = 0 and a = 10.
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Robustness Check: Krusell-Smith Model (Losses)
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Figure 11: Training Loss vs Epochs Plots (Projection Method). Shaded areas are
80% confidence interval.

We evaluate dV and consumption on the stochastic steady state for g based on the

finite difference code of Fernandez-Villaverde et al. (2018).

Projection Approach. Figure 11 shows the training loss as a function of the training
epoch. Here, one epoch corresponds to 20 steps of SGD. Figure 14 shows the relative
standard deviation for dV' and the consumption as functions of a, in each of the two
possible values of y. We used a grid of 21 points between a = 0 and a = 10. We
evaluate dV and consumption on the same distribution g as for the discrete state
approach, except that we first project it onto the basis functions before we feed the

coeflicients into the neural network.

E Additional Working For Section 6 (Online Ap-
pendix)

E.1 Firm Heterogeneity and Capital Adjustment Costs

Proof of Proposition 3. Household optimization: The representative household chooses

consumption, Cy, labour supply, L, and the wealth invested in firm 7 equity, E!, to

solve:

= 1 LN
max E e "U(Cy, Ly)dt, where U(Cy, L;) = —— <C’t — x— )
Ct,Lt,{El} 0 ]_ - 7
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Figure 12: Relative error (one standard deviation divided by mean) for value function
and policy function for the finite agent approach.

0.0035

std(dV)/dV (Employed) std(dV)/dV (Unemployed)

0.004 f
0.003 1 S 1 00035}
0.0025f * .. L7 | 0.003 |
0.002 + 1 0.0025 + ~
0.0015 . . . . 0.002
0 2 4 6 8 10 0 2 4 6 8 10
a a
std(C)/C (Employed) std(C)/C (Unemployed)
0.0016 T i T T 0.002 . , , —
0.0014 +
0.0012f - . "7 ] 0.0015
0.001
: : : : 0.001 : : : :
0 2 4 6 8 10 0 2 4 6 8 10
a a

Figure 13: Relative error (one standard deviation divided by mean) for value function
and policy function for the finite state approach.
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Figure 14: Relative error (one standard deviation divided by mean) for value function
and policy function for the projection approach.

and where p is the continuous time discount factor, ¢ is the coefficient of relative risk
aversion, y determines the disutility of labor, ¢ is the Frisch elasticity of labor supply,

and the household is subject to the budget constraint:

- (idt + dp |
dA, = —Cydt + w, Lydt + [ |Ei <w> di] . where [ Bidi = A,
% you i

The representative household’s HJB equation can be written as:

1
oV (A, 2,g) = max {U(C, L)+ 0aV(A, 2 g)pua + 504V (4, 2,0)(74)?

sy g

1

+ X [0V(Az gk )k},

€=€L,€H
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where:
ps=—C+wl+ [/E <W> di] :

e[l

Household optimal consumption decision, labor supply decision and portfolio choice

give:

aC'U(C7 L) = aAV(A7 Zag) = A7
OLU(C, L) = =04V (A, z, g)w,
0aV(A, 2,9) (7" + 1) = (77 + 1) = (03, — 03,) (044V (A, 2, 9)oa + D42V (4, 2, g))

The third equation implies the standard asset evaluation condition:

i s i
pt:/t e t)stdsz‘/;.

t

where V)’ is the value function of the firm at time ¢.

Firm optimization: Each firm takes the household stochastic discount factor A; and

wage as given and chooses labor hiring and investment to maximize its market value
V. Let x; := [k, €] be the idiosyncratic state variables, ¢; be an arbitrary control

{l;,;n;} and assume that optimal control ¢ exists. Suppose the firm chooses:

. s, s € [0, + hl
cr=
s, s € (t+ h,00)

Then we have:

00 AS
/ e_p(s_t)—ﬁ(x, ez, g)ds]
t At

t+h As A
:Et / e_p(s_t)iﬂ-(l‘v Cs, 2, g>ds + ihe_ph‘/;-f-h()(t—i-h) .
t At At

where 7(x, ¢, 2, g) := e*e; (k) ? ()" —wily — (ng + 1 (ny, ky)) is firm profit. Rearranging

)8
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gives:

0> E,

t+h A, A
/ e_p(s_t)Aw(cs)ds] + E; [ ;\Jrh@_phvi+h(Xt+h) - Vi(fﬂ)] - (E1)
t ¢

t

By 1t0’s Lemma, we have:

dAy = |0, Ap.(2) + ;@ZAJZ 24 Z / 99 — g (k e)dk] dt + 0.\Ao.(2)d B

€=€L,€H

= pa(z, g)dt + UA(Z 9)dB;

AV = |0k V (i, k) + (9ZZVUZ Z / 99 — g (K e)dk] dt +0,Vo.(z)dBY

L €=€r.€H
+ (V(k,&2,9) = V(k,&2,9)dJ;
= v (k, e, 2,9)dt + ov(k, € 2, 9)dBY + jv(k, €, 2, g)dJ}

and so:

d(e "N V;) = e P (—pAiVi 4 paVi + pv Ay + opov)dt + (oaV; + oy A)dBY + jvAdJY).

So the expected difference is:

A
B | e Vi (o)~ (o)
t

1 t+h
= [ e { — DAVt iV + OV ON0.(2) + M(V (k6 2, 9) — V(k, 6, 2, 9))
t Jt

+ <8kVuk(k,e,z,g) + 0.V (z) + ;@ZVUZ 24 Z / 99 — gk, € dk:) A }d

€=€r1,,€H
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Substitute this expression into (E.1), and devide by h to get:

1 [t+h A,
0> E, [/ e_p(s_t)—ﬁ(x, Csy 2,9)ds
t

h A,
Lo oo AV, V 4+ 9,VO,A
+hAt/t € { p + pupaV + (0.(2))°
+ )\Z(V(ka ga 279) - V(kv €, Zag))
n <8kVuk(k;,e,z,g) 0.V (2) + azzvoz Z / gl dk:) AS} ds}

Taking the limit h — 0 and noting that the inequality becomes equality for optimal

control ¢ = (n,[) gives the following:

0 =max { = (p— ua(,9)/A (. 9) V(hy € 2,) + 7, by 1)
1
+&WMn@+0me+j@N@@V+XW%£&m—V%@%m)

+ aAavaz NS /augkedk}

€=€],,€H

Taking first order conditions we have:

c_ k(v _, ﬁ_<w)ﬂ
" x1 \ Ok - \vzek?

Substituting in the optimal labor hiring decision [* and investment n*, and all equi-

librium conditions will give the stated master equation.

Derivation for pa(z,g). In order to take the master equation to the computer, we

need to derive an expression for u through repeated application of It6’s Lemma. We

start by defining:

L(z,g)*%

f(Z,g> 320(279)—X 1_}_()0

)
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so that A = f=7. Applying [t6’s Lemma to A = f~7 gives:
e 1 o
a2 9) = =7 (2,9)7 y(z,9) + 570 + D (2,9) 7 (04(2,9))°,
on(z.9) = —1f(2,9) " log(z.9)

Now, we can derive the expression for ps. (For notational convenience, we drop the
explicit dependence on (z, g) for the remainder of the section.) From the goods market

clearing condition, we know the consumption level is:

C= /Z [zei(ki)e(li)” - (nl + 21(7:32>] di = /icidi.

So, by Itd’s lemma we have:

Hf = //Jcidi —xL?pup — %L@*1(0L>2 = /(,uci — XL@luli) di — %L«pfl(o_L)Q7
where we used the labor market clearing condition that L = [, I'di, and ur = [; ju;,di.

The drift ., is given by:

e, = € (K (1)" s + 0z ()71 (1), + vze' (K (1)
v(iv—1)
S

i 1)2
i(1.0N\0 (7i\v— Xar X X117
ze (KDY (1N (0y,)? — l,uni(l + ;{Z )+ 2]; (0n,)® = ?1 Ek@';ﬂ%i

We can simplify this expression by applying the labor market clearing condition w =
xL¢ = vz (k) (1)~ to cancel out terms vzel (kH)? (1)1, and yL¢p,, for every i.
Additionally, we can merge terms ““(q,,,)? with £XN¥*1(0;)2. We can also apply

[t6’s lemma to the labor market clearing condition to get 24 = %L = ”Z/f , which
l L p+1—v

means that:

Lw(c.)?
21+ ¢ —v)2?

vivr—1 - )
A 2 2 (00, /1')*di — %Lwﬂ(%f =—

JESGORG

(2
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Combining these simplifications gives that:

. :/i <(ei<kz")9(ﬁ)”uz + 2 () 7N o) = |, 88‘/: * 2Xk1 (ons)" = % EZ;WD .

Lw(o.)?
21+ ¢ —v)2?

The remaining terms to be specified are p,, and o,,,. To get these expression we apply

[t6’s lemma to the optimal investment decision n’ = %(akvi — 1), which implies:

1 (o kPVI] KRV 1K SV,
i = P [Xl (aki - 1) * Xla(ki)Q] T okas" T 2y, okio2 )
T R

On

Finally, the expression for o is:

oV

or =k (1) o, - Oni gt
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Parameter Symbol  Value

Capital share 0 0.21
Labor share v 0.64
Quarterly depreciation ) 0.025
Risk aversion v 1.0
Quarterly discount rate p 1.25%
Mean TFP Z 0.0
Reversion rate i 1.0
Adjustment cost X1 2.0
Labor disutility X 2.21
Frischer elasticity © 0.5

Volatility of TFP o 0.007
Transition rate (L to H) AL 0.25
Transition rate (H to L) An 0.25

Low labor productivity €r, 0.9
High labor productivity €H 1.1
Minimum of capital Kmin 1.0
Maximum of capital Kmaa 6.0
Maximum TFP Zmaz 0.04
Minimum TFP Zmin —0.04

Table 7: Parameters for Firm Dynamics Model

E.1.1 Implementation Details of Firm Dynamics Model

Our economic parameters are shown in Table 7.

Parameterization and Master Equation: We parameterize the marginal value of capi-
tal 9,V by a neural network with 5 layers and 64 neurons per layers, a tanh activation
function between layers and no activation at the output level. We take derivatives
w.r.t k to the master equation stated in Proposition 3 to reduce the number of auto-
derivatives to be taken as the marginal value of capital 9,V and its derivatives are

the only terms that appear in the dynamics of A.
Sampling and Training: We sample points of firm i’s individual capital level uniformly
from [kmin, Kmaz]. We sample points of the distribution {k’} in two steps: first we

sample each &’ uniformly from [kmin, kmaz); then we sample a equilibrium wage shifter
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Aw to move the distribution such that the equilibrium wage is updated as w =
(1+ A, )w, where A, is drawn uniformly from [—0.1,0.1]. This step is similar as the
moment sampling described in section 4.2.1. The loss function is constructed as the
master equation loss plus the “shape constraint” 9, V* > 0 with equal weights. The

training part contains two steps:

1. Training the neural network without ;5 in the master equation for 2000 epochs.
The purpose of this step is to omit additional feedback loops between consump-
tion and investment and get a downward sloping firm’s marginal value on capital
V.

2. Training the neural network with the full master equation.

The training loss decay plot is available in Figure 15.

Training Losses for Firm Dynamics Model
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Figure 15: Training losses plot for Firm Dynamics model.

E.2 Spatial Model
E.2.1 Details on the Model Solution

Worker decision problem: Formally, the decision problem of worker i € [0,1] is to

choose processes ¢’ = {c! : t > 0} and ¢’ = {¢} : t > 0} to maximize

Eo [/0 e "t (log cidt + v (j; + §f)dJZ>}

88



subject to the set of static budget constraints
Vt>0: ci = wji,
and the location evolution equation
dji = sid.J}.

Here, w,;; denotes the market wage in location j at time ¢, d.J; is an idiosyncratic
Poisson shock with constant arrival rate p that represents the arrival of moving op-
portunity shocks, ¢/ € {1 — ji,....,J — ji} is the moving decision conditional on a
moving opportunity shock arriving at time ¢, and v{(j’) is an additive utility shifter
conditional on a moving opportunity shock and the subsequent choice to move to
new location j’. This shifter captures location preference shocks and moving costs as

follows:
v (J") =&y — Ty g

where {Sj/vt :j€e{l,..,J},t > 0} denotes a collection of independent idiosyncratic
Gumbel-distributed random variables with mean zero and inverse scale parameter v

and (755 : j,j € {1,..., J}) is the matrix of moving disutility.*?

Capital owner decision problem: The decision problem of capital owner i € ([1,2] is

to choose processes ¢’ = {ci : t > 0} and ¢* = {¢} : t > 0} to maximize
E, {/OOO e Pt (log cidt + vl (5l + §ti)thi)}
subject to the wealth evolution
dal = (rjz7ta§ — cdt

and the location evolution
dji = sid.J}.

Here, 7;; denotes the market rental rate for capital in location j at time ¢. All remain-

22The fé,)t should be interpreted as preference shocks only at jump times of dJ}. At all other
times, the 5;”,1& play no role for the decision problem because they only enter utility conditional on
dJi # 0.
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ing variables are as for the worker problem. In particular, the variables ji, d.J¢, ¢!, v¢,
which capture the location choice problem, have the same meaning and moving costs
and preference shocks (implicit in the preference shifter v}) are specified in precisely

the same way as for workers.

Recursive formulation of decision problems: Let V!(j, z, g) denote the value function
of a worker in location j at aggregate state (z,¢) in a period without a moving
opportunity shock or right after having moved. Similarly, let V*(j,a, z, g) denote the
value function of a capital owner in location j with wealth a at aggregate state (z, g)
in a period without a moving opportunity shock. The value functions and the optimal

consumption choices satisfy the HJBEs

0= max f - pViGizg) +loget (£ + L+ LWz | (B2

c:c=w;(z,9)

(Al i gk)

0= mgxx{ — ka(j, a,z,9) +loge+ (L;+ Lo+ L.+ Ly )Vk(j, a, z,g)}{E.B)

where the operators L;, £,, L., and E’;g are defined as follows:?3

Jell

‘ij(j7a7"7’7g) = <E£1’W’£J [ max }{V<jl7a7z7.g) - Tj,j/ +§j/}] - V(j7a7z7.g)>

LoV (j,a,2,9) = 0.V (j,a,2,9)(ri(z,9)a —c)

1
LV (j,z,9) =0, V(j,a,z,9)nz—2)+ §a2ﬁsz(j, a,z,9) (E.4)

(gt ofigh) ! . o

ﬁg“ et V(]a a, Z>g) = Z agl(j’)v(ja a, Z?Q)Mgl(],a Zag)
i=1
J
+ 3 /R Dy oV, a, 2 g) () ige (7, b, 2, g)db. (E.5)
j=1

Here, the operator £, contains the location choice problem conditional on receiving
a moving opportunity and E+& denotes the expectation over the J independent

location preference shock draws &, ...,&;.2*2 We compute this expectation and the

23The following operators are defined for functions that include an a-argument. When applying
them to worker value functions, we simply re-interpret them as functions (j,a,z,g) — V(4,2 9)
that are constant in the a-dimension.

24We use the conditional destination choice j' in place of ¢ for the control in the location choice

90



conditional choice probabilities by using several well-known properties of the Gumbel
distribution. First, adding a non-random number to a Gumbel distribution shifts
the mean (location parameter) but results again in a Gumbel distribution with the
same scale parameter. Consequently, the j’-th argument in the maximum operator
is Gumbel-distributed with inverse scale parameter v and mean V(j’,z,9) — 7,
Second, the maximum of these finitely many independent Gumbel-distributed random

variables (with identical scale parameter) is again Gumbel-distributed with mean

J'e{l,..J

ISR [ max {V(] a,z,9) —Tjy + & 1 log (Z e (V(i'a.2,.9)=; a')) .

Plugging this result into the expression for the operator £; allows us to eliminate the

location choice problem from the HJBE by writing the operator as

LV (j,a,zg) = ( log (Z er (V7' az9)= )> — V(j,a,z,g)) ) (E.6)

Third, we apply the property of the Gumbel distribution that the ex-ante probability
of the j’-th draw being the largest is given by

(V(.] aazvg)_T] g’)

w0 (V(a,z2,9) = ety <arg max {V(k a,z,9) — 7, +&} —])

e{1,...,J} ZJ v(V (4,0,2,9)=7j,.)

This formula tells us the choice probabilities before preference shocks are drawn and
coincides with the conditional choice probabilities stated in the main text.

We remark that the structure of the HJBEs in this model does not fit into our
generic model setup from Section 2 before the location choice has been made. How-
ever, it does fit into that framework after the location choice is substituted in up
to a straightforward extension: instead of a single idiosyncratic Poisson jump pro-
cess we need J Poisson processes for destinations j° € {1,...,J} with arrival rates

Aﬂj»j’(v('ﬂ a, z, g))

Firm optimization and factor market clearing: The capital and labor demand of the

problem. The two are related via j' = j +.
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representative firm in each location j implies that, in equilibrium,

i = o exp(f; + ijt)Ka’“ IL%,
wie = ayexp(B; + xjz) KL,

where K, and L, are total capital and labor inputs at location j. The total capital
supply at 7 equals aggregate asset holdings of capital owners residing in location j,
K

j7
L;; = g:(j), because each worker inelastically supplies one unit of labor. Hence,

¢+ = JgagF(j,a)da. The total labor supply simply equals the mass of workers at j,

] [ewexp(B 4+ xaz) (Jragh(La)da) ™ (gh(1)™

wy| | vesp(Bi+ xaz) (Jragh(1,a)da)™ (gh1) ™
Qlgnz)=1| @ | = :

| |onexp(Bs + xoz) (Juagh(J >da)“’“‘1 (gin)"

(Wt | | exp(Br + xuzt) (flR agg (J, )da) ( t(ﬂ)al_l_

Kolmogorov Forward Equation: The KFEs for gl and gF can be derived using the
remark at the end of the presentation of the recursive formulation. We start with g..
Mathematically, after the optimal location choice, the evolution of the idiosyncratic

state ji can be described by

J
djy = > _ (3" = j)d T},
i=1
where jit, . J}t are independent Poisson processes with arrival rates /“Tjgg(v(', 26, 9t)),

cooy i 5 (V(+; 2¢, g¢)). Using this representation of the idiosyncratic state evolution
and adapting the derivation of the KFE in Appendix A for multiple Poisson processes,

we obtain

1g (4: 2,9) (Zm 9)9'(0) —gl(j)> :

Similarly, for the density gF of location-wealth pairs (ji,al) of capital owners, we
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obtain

1gr (4, a, 2, g) =p (E_,I T (VF( a,2,9)g" (1, a) — g"(j, a))
- @a((rj(zv g)a - Ck*(j7 a, z, g))gk(jv CL))

Partial Analytical Aggregation: The previous HIBEs and KFEs allow us, in principle,
to formulate the master equations for this model. However, it turns out that the
problem can be simplified considerably by aggregating capital holdings within each
location. Intuitively, this is possible because the decision problem of capital owners
is scale-invariant, so that their optimal consumption decision will end up being linear
in asset holdings. For this reason, the cross-sectional wealth distribution of capital
holders within each location does not matter for aggregates. To show that this is

indeed the case, we make the guess
k(. k(. 1
V(],a,g,Z):U(],g7Z)+;1OgCL

where v* is a function that does not depend on a. With this guess, the HJB operator

expressions become

1 J y 1
L;iV*(ja,z,9) =p (V log (e”/’”‘)ga > et ’Z’g“fﬂj’)) —v*(j,2,9) + S log a)

=1
]. J k(s1 k
=M ; lOg Z el/(U Uh20 =75 | — v (]7 ng)
i'=1
= L"jvk<j7zvg)
. . . 1
Eavk(jaaa Z>g) = aa <Uk<.7’ Z)Q) + plOgG) (rj(z,g)a - C)
_ ri(z9) — cfa
p

Ezvk(j7a7 ng) = [’ka(jwzag)
L4V (ra, 2, g) = L9004 2, g)

Plugging this into capital owners” HIBE, equation (E.3), we obtain that the optimal
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consumption choice is
kx (- .
c (]JCL?Zug)_IOa

and, after eliminating the max operator, equation (E.3) simplifies as follows:
ri(z , _
0=—pV*(j,2,49) —loga+logp+loga+]<’i) +(L;+ L, +£gu g k))vk(],z,g).
(E.7)
We see that the log a-terms cancel out, verifying our guess for V*.
Next, we show that only a subset of the information contained in g; is relevant for

future prices. Specifically, prices at each date t just depend on the vector

g (giagf) . (Ll,ta"'7LJ,t7Kl,t7"'7KJ,t>

of all aggregate quantities of labor and capital at each location. Furthermore, the
evolution of g, itself only depends on (z, §;), not on the full aggregate state (z, g;).
To see this, let us consider §! and g separately. For the former, note that L;(j) :=

L;; = gi(j) and therefore the KFE for g/ immediately implies

dgi(j) = pg(J, 2, 9¢) (Z (VI 26, 90) ) Le (1) — Lt(i)) ~

The right-hand side depends only on aspects of the distribution g; other than what

is contained in g; only if worker value functions depend on them. Assuming that this

l

is not the case and V'(j, z, g;) = v'(4, 2, §;) for some function v', we obtain

dge(j (Z g (V' (s 26, Ge)) L (1) — Lt(j)> =: 1 (Js 2, ), (E.8)

which indeed only depends on (z,§;). Similarly, K;(j) := K;; = [z agi(j,a)da and
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therefore the KFE for gF immediately implies
dK.(j) = /Radgf(j,a)da = /Raugk(j,a, 2, gr)da - dt
= o (S mletCoanaat 0.0) ~ 3£ ) -
— [ adul(rs 1, g)a = (G, a2 909k (G, @))da -

J
= (Z (0 2, 90) K1) — Kt<j>) it + (ry(2,3) — PRt

Again, this depends on other aspects of g; than those contained in §; only if capital
owner value functions do. If we assume that this is not the case, with a slight abuse

of notation, v*(4, 2, g;) = v*(4, 2, §;), then we obtain

J
0 ) = (3 s 0ot BV = KD ) 45 )= )R )t = .0,
- (E.9)
which only depends on (z, §;). In sum, if individual value functions only depend on
the reduced aggregate state (z, g;), then so does the evolution of that state itself.

This verifies that, indeed, we can use (2, g;) as the aggregate state.

Proof of Proposition 1. Master Equation: We obtain equation (6.1) immediately from

plugging in the optimal consumption choice ¢*(j, z, §:) = w;(z, g:) into the HIBE (E.2)
and showing that, once we impose belief consistency, fi, = 14, the operators L;, L.,
and Egg in the latter equation are identical to the operators £;, £, and L, stated in
the proposition. One immediately verifies that this is the case from equations (E.6),
(E.4), and (E.5) derived previously. Analogously, we obtain equation (6.2) by im-
posing belief consistency in equation (E.7) (the transformed HJBE of capital owners)
and checking that the operators in that equation coincide with the ones stated in
the proposition. Finally, the KFEs for the reduced distribution state g, are given by
equations (E.8) and (E.9), which are identical to the ones stated in the proposition.
Relationship to Bilal (2023): Note that in the limit a; — 0, capital owners and the

capital distribution become irrelevant for the problem. The distribution term £zv' in

the remaining master equation (6.1) for workers’ value function v' simplifies in that
the second of the two terms in the definition of L' vanishes. Let us compare the
resulting master equation with the one stated in Bilal (2023), which is (Bilal, 2023,
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equation (19); using our notation whenever concepts are identically defined):

pV (4 z,G) =U(j,2,9) + p ( log (Z e/ (V' =8)- )) - V(j,z,é))
1
+0.V(j,z, 9z —2)+ 5028“1/(]', 2,9)

J
#3040V G (S mg V2,000~ 101,

Jj'=1

where U(7, z, §) is a flow utility term. With the operators defined above, this equation

can be written as follows:
PV (j,29) = Ui, 2,9) + (Lo + L2+ L)V (], 2, 9)-
This is the same equation as equation (6.1) if and only if

Ui, 2, §) = u(w;(z, §)) = u(ow exp(B; + x;2)(3' (7))

(Bilal, 2023, equation (45)) defines the flow utility U (i, z, g) as

Ui, 2,§) = u(Co ;e *(5(j))79),

where (,& € (0,1) are (derived) parameters, the notation X}B emphasizes that these
are the y,-parameters in Bilal’s variant of the model (as opposed to ours) and Cj ; is
a time-invariant, location-specific consumption shifter that depends on both location-
specific productivity and housing supply. Evidently, the utility flow terms are identical

state by state if we choose parameters such that

Q) = 1-— 57 X5 = CXJBa Oll@ CO]

Clearly, for any set of (derived) parameters (, &, X}B , Co,; in Bilal’s variant of the
model, it is possible to find parameters o, x;, and ; in our variant to make these
conditions hold. Note, furthermore, that none of the parameters «, x;, or 3; appear
elsewhere in the master equations, so that assigning them in this way does not prevent

us from matching the remaining aspects of Bilal (2023)’s master equation. O
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E.2.2 Parameters

All parameters that are not location-specific are summarized in Table 8. We choose
p, 8, Z, n, and o consistent with our parameterization of the KS model (compare
Appendix B.1). We choose p and v as in Bilal (2023) and « to achieve the same
elasticity of the local wage to population changes as in Bilal (2023) utilizing the
isomorphism between our model specification and theirs from Proposition 1.2> We set

the additional parameter oy, that appear in our model extension to (1—q;)/2 = 0.275.

Parameter Symbol  Value
Number of locations J 50
Capital share Qg 0.275
Labor share o 0.45
Depreciation ) 0.1
Discount rate p 0.05%
Mean TFP Z 0.00
Reversion rate i 0.50
Volatility of TFP o 0.01
Moving rate W 2.3
Preference shock parameter v 0.48

Minimum TFP (for sampling) Zmin —0.04
Maximum TFP (for sampling)  zyq 0.04

Table 8: Location-independent parameters for spatial model

We sample the location-specific parameters 3;, x;, and 7; ;s randomly using the

following sampling strategies:

e We draw 3; randomly from a distribution such that the equilibrium popula-
tion distribution in the simplified steady-state model without common noise
and with preference shock parameter v — oo is truncated Pareto distributed
over [1,50] with shape parameter 1. The choice of the Pareto distribution with
shape parameter 1 is motivated by the observation that city sizes appear to ap-
proximately satisfy “Zipf’s law”, but we use a truncation for numerical stability.
We use the simplified model with v — oo for this exercise because this special

case has a closed-form solution and so does not require us to solve the model

25Bilal (2023) does not state all parameters but refers for the calibration to Bilal and Rossi-
Hansberg (2023), which has a slightly different model. To the extent that parameter values cannot
be inferred from Bilal (2023) directly, we try to match the corresponding parameter in Bilal and
Rossi-Hansberg (2023) instead.
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repeatedly in order to calibrate the (3;-distribution.?®

e We draw the sensitivity parameters x; of locations to aggregate productivity by
sampling uniformly from an exponential distribution with parameter 1 (so that
the mean is 1). We then multiply the resulting y;-draws by 0.7 reflecting the
fact that the sensitivity of local consumption to productivity shocks is scaled
down in Bilal (2023)’s model with housing (see proof of Proposition 1 for the

correspondence between the models).

e We group the 50 locations into four “clusters”, one “central” cluster with 20 lo-
cations and three “periphery” clusters with 10 locations each. We set a baseline
value for 7, ;; based on cluster membership and then randomly perturb these
baseline values to generate a less regular pattern in moving costs. Regarding

the baseline values (7)), we make the following choices:

— Movements to the same location are free Tj?j =0 for all 5

— Movements within a cluster have low baseline cost, 77, = 8.882x 107%. To
provide a sense for the magnitude, in the steady-state model with v — oo
and no moving costs (which has a closed-form solution in which all workers’
expected utility is identical), if one agent had to pay this moving cost
after every shock arrival d.J; (but without changing the rest of the model,
including prices), this agent’s welfare would fall by the equivalent of a

reduction of 2% of consumption each period.

— Movements between the central and a periphery cluster have intermediate
baseline cost, TJQJ/ = 4.8569 x 1072, Again, to provide interpretation, the
corresponding number of consumption-equivalent utility loss in the thought

experiment described previously is here 10%.

— Movements between two distinct periphery clusters have high baseline cost,

75 = 2.98030 x 107". The consumption-equivalent utility loss in the

previous thought experiment is for this moving cost 40%.

26However, this does mean that the ultimate population distribution in our model solution will be
less dispersed than a Pareto with shape parameter 1 because preference shocks generate smoothing
when v < .
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For the perturbation of baseline costs, we use in all cases
o 0 . -/
T = €Ty 1 SJ<J <

where ¢; j is a scaling factor that is uniformly distributed over [0.5,1.5] (inde-
pendent across j,j’). The remaining entries of 7 are defined by requiring that

the T7-matrix is symmetric.

The resulting vectors of sampled parameter values 3 = (31, ..., 850) and x = (x1, ---, X50)

are:

B = —(2.60,2.23,2.88,2.69, 2.80, 2.83, 2.77, 2.66, 2.62, 2.48,
2.60, 2.29, 2.76, 1.83, 2.86, 2.31, 2.60, 2.46, 2.80, 2.76,
2.06,1.29,2.68,2.27,1.83,1.76, 2.83, 2.86, 2.78, 1.83,
2.82,2.60, 1.39,2.48, 2.27, 2.68,2.28,1.97, 2.87, 2.17,
1.02,2.17,2.71,2.09, 2.82, 2.57,1.70, 2.70, 2.70, 2.81)

x = (2.76,0.27,1.09,0.93,0.50, 2.05,0.39, 1.34,0.37, 0.25,
1.60,0.62,0.26, 0.62, 2.10, 0.44, 0.29, 0.46, 0.04, 0.37,
0.07,1.39,1.38,0.15,0.65, 1.26, 0.05, 0.74, 0.20, 0.22,
0.09,0.33,0.20,0.74,0.92,0.08, 0.59, 0.03,0.29, 0.33,
1.52,0.04,0.56, 0.38,0.63,1.01, 0.07,0.39, 4.10, 0.34)

In the interest of space, the 2500 sampled parameter values for 7;;; are omitted here.

E.2.3 Implementation Details for Spatial Model

Distribution Representation and Master Equation: As argued in the main text, the
discrete state space method is most appropriate here because the model’s idiosyn-
cratic state space is naturally discrete (once we have aggregated capital holdings
within locations) and because all elements L(j) and K(7) of the transformed distri-
bution g matter directly for some of the entries of Q(z,g). Furthermore, because
the number of locations is already finite, we do not approximate the distribution but
simply choose ¢ = § € [0,00)?’, so that 9! = ¢! and ©* = v*. The master equations
for (9!, %) used in the solution algorithm therefore correspond exactly to the model’s

true master equations for (v!, v¥) stated in Proposition 1. We note that these master
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equations continue to make sense, both mathematically and economically, when the
total population mass of workers differs 1. We exploit this fact in our sampling ap-

proach as described below.

Network Structure: We parameterize each of the value functions v'(j, z, g) and v*(j, 2, g)
with a separate neural network. In both cases, we use a fully connected feed-
forward neural network with 5 layers and 64 neurons per layer, a tanh activation
function between layers, and no activation at the output level. We transform loca-
tions j € {1,..., J} into vectors in {0, 1}’ using one-hot encoding before feeding them
into the neural network. We initialize the neural network so that v! and v* match the
value functions in the steady-state model with aggregate productivity fixed at z = 0.

This is done through a pre-training phase.?”

Sampling: We sample points of the form (j, p, z) by sampling the three dimensions
independently as follows. We sample j € {1, ..., J} and z € [Znin, Zmaz| from a uniform
distribution over their respective domains. For the distribution ¢ = g, we combine
two sampling schemes, (i) mixed steady state sampling and (ii) ergodic sampling, and
we gradually increase the proportion of the sample from scheme (ii) from 0% to 95%

during training. Sampling scheme (i) computes sample distributions ¢ in four steps:

1. Draw a distribution ¢; as a random mixture from three baseline distributions,

~s5,2=0 ~s5,2=0.03 ss,2=—0.03
g » 9

ary distribution g; in the steady-state model with aggregate productivity fixed

,and g , where g**=% denotes the transformed station-
at z = z. The weights on each of the three distributions are drawn uniformly

from the 3-simplex.

2. Draw a distribution ¢, = (@}, @5) as follows. @, is drawn uniformly from
the J-simplex.?® @} is also drawn uniformly from the J-simplex but then ad-

ditionally scaled by another uniform random variable K ~ U[K, K], so that

2In the steady-state model, the master equations reduce to a finite-dimensional system of non-
linear algebraic equations. We solve this system numerically with a Newton method. In the pre-
training phase, we minimize a standard least-squares loss function between the neural network
outputs and the pre-computed steady-state value functions.

28To draw uniformly from the J-simplex, we use the well-known connection to a special case of the
Dirichlet distribution and a common approach to draw from that distribution. Specifically, we draw
uniformly from the J-simplex by drawing J independent exponentially distributed random variables
with parameter 1 and then renormalize so that the resulting vector sums to 1.
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its elements sum to K. We use K = K®*=0 4 (K5#=-003 _ [552=0) apnd
K = K770 4 2(K52=003 _ [552=0)  wwhere K*%*=% is defined in analogy to

~88,2=%2

g
distribution samples.

. {9 serves the purpose of introducing additional (random) noise into the

3. Combine ¢; and @, by forming a convex combination with weight on the first

distribution drawn uniformly from the interval [0.95, 1].

4. Scale the resulting distribution by a uniform random number drawn from [0.98, 1.02].
This last step perturbs the total mass of the distribution, which helps the neural

network to learn the sign of the derivatives dy;)V.

For the ergodic sampling (scheme (ii)), we start the simulation from an initial sample
drawn from scheme (i). Because of the mass perturbation in step 4 and mass preser-
vation in the KFE for workers, also the total masses of workers in our ergodic sample

end up being uniformly distributed in [0.98,1.02].

Loss Function: We impose penalties to impose the shape constraints d,v!, 9,v* > 0

and 8L(j)vl, 8K(j)vk < 0 for all j =1,...,J by choosing the shape error as follows:

1
55(0n’ Sn) ::W Z (| max{_azﬁl(jv 2 @a gn)’ 0}|2 + |maX{_82'ak(]7 2, @7 (9”)7 0}|2)

1 J NI kA o
+J|Sn| > > (Imax{0L;n0'(j, 2, ¢;0"), 0} + | max {0k ;9" (4, z, #; 0"), 0}]?)

(G.zp)esn j'=1

We combine this the equation residual error £¢(0",S™) for the total error £(6™, S™)

as described in Algorithm 1 using the weights k¢ = 1 and x* = 0.2.%

E.2.4 Training Losses

The training loss decay plot is available in Figure 16.

29The equation residual error £¢(0™, S™) here is simply the (unweighted) sum of the residual errors
for each of the two master equations.
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Training Losses for Spatial Model
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Figure 16: Training losses plot for the spatial model (pre-training not shown)
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