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Abstract

We propose and compare new global solution algorithms for continuous time heteroge-
neous agent economies with aggregate shocks. First, we approximate the state space
so that equilibrium in the economy can be characterized by one high, but finite, dimen-
sional partial differential equation. We consider different approximations: discretizing
the number of agents, discretizing the state variables, and projecting the distribution
onto a set of basis functions. Second, we approximate the value function using neural
networks and solve the differential equation using deep learning tools. We refer to the
solution as an Economic Model Informed Neural Network (EMINN). The main advan-
tage of this technique is that it allows us to find global solutions to high dimensional,
non-linear problems. We demonstrate our algorithm by solving canonical models in
the macroeconomics literature.
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1 Introduction
Macroeconomists have great interest in studying models with heterogeneous agents and
aggregate shocks. However, a major difficulty with working on these models is that the
agent distribution of individual states becomes an aggregate state variable and so the state
space becomes infinite dimensional. In recent years, we have seen many attempts to address
this problem using tools from the deep learning literature. All approaches need to start by
constructing a finite dimensional approximation to the distribution of agent positions. Most
approaches are in discrete time and replace the agent continuum by a finite collection of
agents. In this paper, we develop and compare the three main approaches for approximating
the distribution in continuous time: imposing a finite number of agents, discretizing the state
space, and projecting onto a collection of basis functions. For each approximation, we show
how to characterize general equilibrium as a high but finite dimensional differential equation
and how to customize deep learning techniques to compute global numerical solutions to
the differential equation.

We develop solution techniques for a class of dynamic, stochastic, general equilibrium
economic models with the following features. There is a large collection of price-taking
agents who face uninsurable idiosyncratic and aggregate shocks. Given their belief about
the evolution of aggregate state variables, agents choose control processes to solve dynamic
optimization problems. When making their decisions, agents face financial frictions that
constrain their behaviour and potentially break “aggregation” results that would allow the
distribution of agents to be replaced by a “representative agent”. We solve for a rational
expectations equilibrium in which agent beliefs about the evolution of aggregate states are
consistent with the dynamics that emerge in the economy. Solving for equilibrium reduces
to solving a “master” partial differential equation (PDE) that summarizes both the agent
optimization behaviour (from the Hamilton-Jacobi-Bellman equation) and the evolution of
the distribution (from the Kolmogorov forward equation). A canonical example of this type
of environment is the Krusell and Smith (1998) model, which is often used as a workhorse
environment for testing solution methods in macroeconomics and we ultimately use as our
main example economic model.

Our solution approach approximates the infinite dimensional master equation by a fi-
nite, but high, dimensional PDE and then uses deep learning to solve the high dimensional
equation. We consider three different approaches for reducing the dimension of the mas-
ter equation. The first approach approximates the distribution by a large, finite number
of agents. We refer to this as the “finite-agent” approximation. The second approach ap-
proximates the distribution by discretizing the agent state space so the density becomes a
collection of mass points at grid points. We call this the “discrete-state” approximation.
The third approach approximates the distribution by a linear combination of finitely many
basis functions. We call this the “projection” approximation. Most deep learning macroe-
conomic papers have focused on the finite agent approximation with some exceptions that

2



use a discrete-state approximation (e.g. Huang (2022)).
We solve the finite dimensional approximation to the master equation using recent ad-

vances in deep learning. In particular, we adapt the Deep Galerkin Method (DGM) devel-
oped by the applied mathematics, which is similar to the Physics Informed Neural Networks
(PINNs) developed in the physics literature. This approach approximates the value function
by a neural network and then uses stochastic gradient descent to train the neural network
to minimise a loss function that summarizes the average error in the master equation. We
calculate average errors by randomly sampling over points in the state space, with greater
sampling applied to the regions with more curvature. We also need to handle inequality
boundary conditions arising from financial constraints on the evolution of the state space.
We do this by introducing penalty functions for when financial constraints bind. We refer
to our approach as training Economic Model Informed Neural Networks (EMINNs).

Although our deep learning approach is relatively simple to describe at an abstract level,
there are many complicated implementation details that need to be worked through. In this
sense neural network training is more like an “art” than a routine procedure. One imple-
mentation detail that is particularly important for our approach is choosing how to sample
the states on which we evaluate the master differential equation equation loss. This is dif-
ferent to discrete time approaches where the economy is simulated to calculate expectations
and is also different to other continuous time deep learning papers that don’t have high
dimensional distributions as states. We consider three approaches for sampling the distri-
bution. The first is “moment sampling” that draws samples for selected moments of the
distribution and then samples agent distributions that satisfy the selected moments. The
second is “mixed steady state sampling” that solves for the steady state for a collection of
fixed aggregate states and then samples random mixtures of the different steady state dis-
tributions. The third is ergodic sampling that samples dynamically by regularly simulating
the model economy based on the current estimate of the model solution.

We have found different sampling strategies are useful for different types of distribu-
tion approximations. For the finite agent approximation, we found moment sampling to be
simple and effective. For the discrete state space approximation, we find the most stable
approach was to start with mixed steady state sampling and then move to ergodic sam-
pling once the neural network started to converge. For the projection approximation, we
find that a combination of moment sampling and ergodic sampling was effective. To put
moment sampling to work with projections requires a rotation of the basis functions so as to
isolate components that correspond to the selected moments. Deep learning techniques are
sometimes referred to as “breaking the curse of dimensionality” but this is not really true
in the sense that we can only show the neural network a very sparse set of distributions.
Instead, a key “art” to training a neural network is to sample from an intelligently chosen
subspace that helps the neural network to learn the equilibrium functional relationships in
an economically interesting part of the state space.

We illustrate our techniques by solving continuous time versions of the Aiyagari (1994)
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and Krusell and Smith (1998) models (with some simple extensions in the appendix). These
are canonical macroeconomic models that have well developed solution approaches that we
can use to test our method. For the Aiyagari (1994) model, we show that we can match the
finite difference solution to high accuracy and, for the finite-agent approximation, solve for
transition dynamics without a shooting algorithm. For the Krusell and Smith (1998) model,
we show that we generate solutions with a low error for the master equation. Traditional
techniques only give approximate solutions to the Krusell and Smith (1998) model so we
do not have an ideal benchmark for testing the model. However, we show that we get
very similar results to contemporary approaches such as Fernández-Villaverde et al. (2023).
Ultimately, all the distribution approximations are able to solve the Krusell and Smith
(1998) model.

Although the different distribution approximation approaches can all be effective, we
found they had different strengths and weaknesses in our experiments. We found the finite-
agent approximation to be very robust in a number of ways: the neural network can be
trained with a simple sampling procedure that does not require ergodic simulation (or any
knowledge of the model solution), the algorithm only required a moderate number of agents
(approximately 40), and we had success adding parameters as auxiliary states so the model
could be solved across the state and parameter space at the same time. By contrast, we
found the discrete-state approximation to be difficult to work with for the Krusell and Smith
(1998) model. We believe a lot of the issues come from having to approximate the derivatives
in the Kolmogorov Forward Equation on the discrete state space. One challenge is that this
requires a fine grid for agent wealth (approximately 200 grid points). A related challenge
is that the training samples need to come from relatively smooth densities and so ergodic
sampling is very important. Ultimately, this made the model slow to train. Finally, the
projection approach brings a different set of trade-offs. Both the finite agent and discrete
state approximations feed relatively large state spaces into the neural network and then let
the neural network work out how to structure the approximate value function. By contrast,
the projection method requires more choices ex-ante. This allows us to work with a much
lower dimensional approximation (approximately 5 basis functions) and to choose which
statistics of the distribution we want to match most closely in our approximation.

Literature Review: The economics literature has traditionally used three main approaches
for solving heterogeneous agent models with aggregate shocks. One approach is to fit a
statistical approximation to the law of motion for the key aggregate state variables (e.g.
Krusell and Smith (1998), Den Haan (1997), Fernández-Villaverde et al. (2023)). As has
been extensively discussed in the literature, this approach works well when the law of motion
for the key state variables can be efficiently approximated as a function of key moments of
the distribution (and so the economy is very close to permitting “aggregation”). By contrast,
our approach can handle economies without near-aggregation results. A second approach is
to take a type of perturbation in the aggregate state and then solve the resulting problem
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with matrix algebra (e.g. Reiter (2002), Reiter (2008), Reiter (2010), Winberry (2018),
Ahn et al. (2018), Auclert et al. (2021), Bilal (2021), Bhandari et al. (2023)). By contrast,
we solve the model globally and so can handle partial differential equations with extensive
non-linearity. A final approach is to take a low dimensional projection of the distribution
(e.g. Prohl (2017), Schaab (2020)). Our approach is complementary to these papers in that
it allows for more general, higher dimensional projections through the use of deep neural
networks.

Our paper is part of a growing computational economics literature using deep learning
techniques to solve economic models and overcome the limitations of the traditional solu-
tion techniques. Many of these papers focus on solving heterogeneous agent macroeconomic
models in discrete time (e.g. Azinovic et al. (2022), Han et al. (2021), Maliar et al. (2021),
Kahou et al. (2021), Bretscher et al. (2022)) or using a discrete time approximation to a sys-
tem forward and backward differential stochastic equations (e.g. Han et al. (2018), Huang
(2022)). Our work is part of a less developed literature attempting to deploy deep learning
techniques to solve the differential equations that arise in continuous time economic mod-
els (e.g. Duarte (2018), Gopalakrishna (2021), Fernandez-Villaverde et al. (2020), Sauzet
(2021)). We make two main contributions. First, within the continuous time literature, we
show how to handle a rich distribution of agents and directly solve the “master equation”
for the economic system. This type of PDE has been introduced by Lions (2011) to de-
scribe the value function of a representative player in a mean field population of players at
equilibrium. This necessitates resolving a collection of problems that are particular to the
analytic characterization of continuous time problems, such as: approximating inequality
boundary conditions, using the Kolmogorov Forward Equation to derive laws of motion for
projection coefficients, and approximating derivatives with respect to the distribution. Sec-
ond, compared to all the discrete time literature, we compare a range of finite dimensional
distribution approximations rather than imposing a finite agent approximation (or a finite
state space approximation in Han et al. (2018)). We extend our technique outlined in this
paper to solve search and matching models in Payne et al. (2024) and macro-finance models
with long-term asset prices in Gopalakrishna et al. (2024).

There is also a growing mathematics literature that attempts to use neural networks
to solve differential equations. Technically, our approach builds on the Deep Galerkin
Method (DGM) and Physics Informed Neural Networks (PINNs) developed in Sirignano
and Spiliopoulos (2018) and Raissi et al. (2017); see also Li et al. (2022). These papers
train PINNs to solve systems of differential equations that arise in physics and finance for
instance. We train Economic Model Informed Neural Networks (EMINNs) to solves sys-
tems of differential equations that arise in economics. A key difference is that economic
models have forward looking optimizing agents and market clearing conditions. Our ap-
proach to handling borrowing constraints draws on Lu et al. (2021b) and Brzoza-Brzezina
et al. (2015). We also build on the literature using neural networks to solve mean field
games. Al-Aradi et al. (2022); Carmona and Laurière (2021) adapted the DGM to solve
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the PDE system arising in mean field games. Fouque and Zhang (2020); Carmona and
Laurière (2022a); Germain et al. (2022b) proposed deep learning methods for mean field
games and mean field control problems based either on direct approximation of the control
or on an adaptation of the Deep BSDE method proposed by Han et al. (2018). We refer
to e.g. Laurière (2021); Carmona and Laurière (2022b); Hu and Lauriere (2022) and the
references therein for more details. However, these works are mostly focused on solving the
problem at equilibrium and without aggregate shocks, so the equilibrium optimal control is
learnt only for one distribution – the equilibrium distribution (or flow of distributions for
non-stationary problems). Min and Hu (2021) proposed a deep learning method based on
recurrent neural networks and signatures to solve mean field games with aggregate shocks,
when the interactions are through moments and without solving the master equation. Per-
rin et al. (2022) introduced a deep reinforcement learning algorithm based on fictitious play
to learn population-dependent policies for finite-state, finite-action mean field games. Two
deep learning methods for finite state Master equations have been proposed and analyzed
in Cohen et al. (2024), based on backward induction and the DGM respectively. In the con-
text of mean field control, Carmona et al. (2019); Gu et al. (2021); Germain et al. (2022a);
Frikha et al. (2023) used deep learning to compute social optima with controls depending
on the population distribution, but these methods do not solve Nash equilibria. Relative
the mathematics literature, our focus is on solving master equations for a class of mean field
games with aggregate shocks.

This document is organised as follows. Section 2 describes the general economic envi-
ronment that we will be studying and derives the master equation. Section 3 describes the
different finite dimensional approximations to the master equation. Section 4 describes the
solution approach. Section 5 applies our algorithm to continuous time version of Krusell
and Smith (1998). Section 6 dicusses practical lessons. Section 7 concludes.

2 Economic Model
In this section, we outline the class of economic models for which our techniques are ap-
propriate. At the high level, in economics terminology, we are solving continuous time,
general equilibrium models with a distribution of optimizing agents who face idiosyncratic
and aggregate shocks.1 In mathematics terminology, we are solving mean field games with
common noise.

1For ease of exposition, we restrict attention in the main text to models with one-dimensional aggregate
shocks. The method is no different for the case with multi-dimensional aggregate shocks.
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2.1 Environment

Setting: The model is in continuous time with infinite horizon. There is an exogenous
one-dimensional aggregate state variable, zt, which evolves according to:

dzt = µz(zt)dt+ σz(zt)dB0
t , z0 given, (2.1)

where B0
t denotes a common Brownian motion process. We let F0

t denote the filtration
generated by B0

t .

Agent Problem: The economy is populated by a continuum of agents, indexed by i ∈ I =
[0, 1]. Each agent i has an idiosyncratic state vector, xi ∈ X , that evolves according to:

dxit = µx(cit, xit, zt, qt)dt+ σx(xit, zt, qt)dBit + γx(xit, zt, qt)dJ it , xi0 given, (2.2)

where cit is a one-dimensional control variable chosen by the agent, qt ∈ Q is a collection
of aggregate prices in the economy that will be determined endogenously in equilibrium,
Bit denotes an N -dimensional idiosyncratic Brownian motion process, and J it denotes an
idiosyncratic Poisson jump process.2 We let λ(x) denote the rate at which Poisson jump
shocks arrive given idiosyncratic state x.

Each agent i has a belief about the stochastic price process q̃ = {q̃t : t ≥ 0} adapted to
F0
t . Given their belief, agent i chooses their control process, ci = {cit : t ≥ 0}, to solve:

V (xi0, z0) = max
ci∈C

E0

[∫ ∞
0

e−ρtu(cit)dt
]

(2.3)

s.t. (2.1), (2.2),

where ρ > 0 is a discount parameter, u(cit) is the flow utility the agent gets and C = {cit ∈
C(xit, zt, qt) : t ≥ 0} is the set of admissible controls, where C(x, z, q) denotes the set of
possible actions for a player whose current state is x, when the aggregate state is z and the
prices are q. This constraint set incorporates any “financial frictions” that restrict agent
choices. A classic example in economics is that the control must keep xit positive. We let X
denote the domain of xit implicitly defined by the constraint that ci ∈ C. We assume that u
is increasing and concave.

Distributions and Markets: We let Gt = L(xit|F0
t ) and gt denote the population distribution

and density across xit at time t, for a given history F0
t . We assume that the economy

contains a collection of markets with finite dimensional price vector qt and market clearing
2We do not consider the case where dB0

t directly impacts the evolution of idiosyncratic states. In
principle, the techniques outlined in this paper still apply in this case but such cases typically involve long
term asset pricing that leads to more complicated market clearing conditions. We take up these issues in
Gopalakrishna et al. (2024).
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conditions that allow us to solve for qt explicitly in terms of zt and gt3:

qt = Q(zt, gt), ∀t ≥ 0, (2.4)

We assume that markets are incomplete in the sense that agents cannot trade claims directly
(or indirectly) on their idiosyncratic shocks dBit and dJ it . This means that the idiosyncratic
shocks generate a non-degenerate cross sectional distribution of agent states.

Equilibrium: Given an initial density g0, an equilibrium for this economy consists of a
collection of F0

t -adapted stochastic processes, {cit, gt, qt, zt : t ≥ 0, i ∈ I}, that satisfy the
following conditions: (i) each agent’s control process ci solves problem (2.3) given their belief
that the price process is q̃, (ii) the equilibrium prices q satisfy market clearing condition (2.4),
and (iii) agent beliefs about the price process are consistent with the optimal behaviour of
other agents in the sense that q̃ = q.

2.2 Recursive Representation of Equilibrium

We assume that there exists an equilibrium that is recursive in the aggregate state vari-
ables: {z, g}. Observe that the price vector q can be expressed explicitly in terms of {z, g}
so beliefs about the price process can be characterized by beliefs about the evolution of the
distribution dgt(x) = µ̃g(zt, gt)dt.

Hamilton Jacobi Bellman Equation (HJBE): In principle, the constraint cit ∈ C(xit, zt, qt)
could generate a boundary condition:

Φ(x, z, g, V (x, z, g), DxV (x, z, g)) ≥ 0, x ∈ ∂X .

However, in order to help the neural network train the value function, we replace the hard
constraint on the set of admissible controls by a flow utility penalty ψ(c, x, z, g) that is
larger the “more” that cit ∈ C(xit, zt, qt) is violated. We provide explicit examples of ψ in our
applications in Section 5. Given a belief about the evolution of the distribution, µ̃g(zt, gt),
the agent’s optimal choice of control c solves the HJBE:

0 = max
c∈C(x,z,g)

{
− ρV (x, z, g) + u(c) + ψ(c, x, z, g) +DxV (x, z, g)µx(c, x, z,Q(z, g))

+ 1
2 tr
{

Σx(x, z,Q(z, g))D2
xV (x, z, g)

}
+ λ(x) (V (x+ γx(x, z, q), z, g)− V (x, z, g))

+ ∂zV (x, z, g)µz(z) + 1
2 (σz(z))2

∂zzV (x, z, g)

+
∫
X
µ̃g(z, g)∂V

∂g
(x, z, g)(y)dy

}
(2.5)

3We will focus on numerical examples where qt = Q(zt, ḡt), where ḡt is the mean of g but this is not a
constraint on the algorithm.
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where V (x, z, g) is the value function of the household, ∂V/∂g is the Frechet derivative of
V with respect to the distribution, and Σx(·) := σx(·) (σx(·))>. The intuition behind this
HJBE is that, although the agent can only influence x, the state is (x, z, g) and hence the
value function should take these variables as inputs. From V , the optimal consumption,
denoted by c∗, can be computed for every (x, z, g), which allows a representative player to
react optimally to any population distribution. The optimal control, c∗, is characterised by
the first order condition:

0 = u′(c∗(x, z, g)) + ∂cψ
′(c∗(x, z, g), x, z, g) +DxV (x, z, g)∂cµx(c∗(x, z, g), x, z,Q(z, g))

Kolmogorov Forward Equation (KFE): Denote the recursive equilibrium optimal control of
the individual agents by c∗(x, z, g; µ̃g). Compared with the above notation, we add µ̃g to
stress the fact that the belief of the agent may differ from the true µg. Then, for a given
z path, the evolution of the distribution under the optimal control can be characterized by
the Kolmogorov Forward Equation (KFE):4

dgt(x) = µg(c∗(x, zt, gt; µ̃g), x, zt, gt)dt, where (2.6)

µg(c∗t , x, zt, gt) := − ∂x[µx(c∗t (x, zt, gt; µ̃g), x, zt, Q(zt, gt))gt(x)] + 1
2∂xx[(σx(zt))2gt(x)]

+ λ((1− γ′(x, zt, qt)gt(x− γ(x, zt, qt))− gt(x))

Under this recursive characterization, the belief consistency condition becomes that µg = µ̃g.

Master Equation: We follow the approach of Lions (2011) and characterize the equilibrium
in one PDE, which is often referred to as the “master equation” of the “mean field game”.
This formulation is particularly convenient when the evolution of the economy is subject to
aggregate shocks and the evolution of the aggregate state variables cannot be determined
deterministically. Conceptually, the master equation is related to the HJBE (2.5) but it im-
poses the belief consistency by putting the equilibrium KFE into the HJBE. In equilibrium,
the value function V (x, z, g) is the solution to the following “master equation”:

(LV )(x, z, g) = 0 (2.7)
4Observe that there is no noise in the KFE because dB0

t does not directly impact the evolution of
idiosyncratic states.
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where the operator (LV )(x, z, g) := (Lh(c∗,Q)V + LgV )(x, z, g) is defined by:

(Lh(c∗,Q)V )(x, z, g) := − ρV (x, z, g) + u(c∗(x, z, g)) + ψ(c, x, z, g)

+DxV (x, z, g)µx(c∗(x, z, g), x, z,Q(z, g))

+ 1
2 tr
{

Σx(x, z,Q(z, g))D2
xV (x, z, g)

}
+ λ(x) (V (x+ γx(x, z, q), z, g)− V (x, z, g))

+ ∂zV (x, z, g)µz(z) + 1
2 (σz(z))2

∂zzV (x, z, g)

(LgV )(x, z, g) :=
∫
X
µg(c∗(x, z, g), z, g)∂V

∂g
(x, z, g)(y)dy.

In this notation, the Lh(c∗,Q) operator reflects the optimization problem of the household
and the Lg operator reflects how the evolution of the distribution affects the household
value.5 Intuitively, V (x, z, g) can be interpreted as the optimal value of a representative
player who starts at state x, with aggregate shock equal to z, and who faces a population
that starts at the distribution g and then plays according to the Nash equilibrium control c∗.
The technical challenge of working with the master equation is that it contains an infinite
dimensional variable, g, and a derivative with respect to this variable. This poses a collection
of mathematical difficulties for the mean field game theory literature, which attempts to find
conditions under which the infinite dimensional master equation is well defined and has a
solution. We refer to Cardaliaguet et al. (2015); Bensoussan et al. (2015) for more details.
By contrast, we are focused on numerical approximation, which means that we need to find
a finite dimensional approximation to the distribution, convert the master equation into a
high, but finite, dimensional PDE, and develop techniques for solving the PDE. The goal of
our paper is use deep learning techniques to characterize such a finite dimensional numerical
approximation.

2.3 Model Generality

Our model set up nests many canonical models in macroeconomics such as Krusell and
Smith (1998). However, we have also made a number of strong assumptions, which we
discuss below:

(i). We have assumed that the prices, q, can be expressed explicitly in closed form as
functions of the aggregate state variables (z, g), see (2.4). In models with more com-
plicated market clearing conditions we need to solve an auxiliary fixed point problem
in order to solve for the recursive representation of the price. Gopalakrishna et al.
(2024) extends the methodology to resolve the challenges of introducing assets with
complicated pricing.

5We define the gradient DxV (· · · ) as a row vector, such that the product DxV (· · · )µx(· · · ) has to be
interpreted as an inner product for multi-dimensional x.
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(ii). We have assumed that the distribution only enters the master equation through
through the pricing function. If the model had search and matching frictions, then the
distribution would impact which agents are likely to be matched and so enter the mas-
ter equation in a more complicated way. Payne et al. (2024) extends the methodology
to resolve these challenges.

(iii). We have assumed that the aggregate Brownian motion B0 does not directly shock the
evolution of idiosyncratic states. Instead it changes prices and so indirectly changes
agent controls. This means that the KFE (2.6) does not have an aggregate noise term
dB0

t . The solution approach can easily be generalized to handle KFEs with aggregate
noise so long as it does not lead to significantly more complicated market clearing
conditions (a common extension studied is Fernández-Villaverde et al. (2023)). As
discussed in points (i) and (ii), the greater difficulty is introducing assets with prices
that are only an implicit function of the distribution or non-competitive markets.

Ultimately, the goal of this paper is not to offer a toolbox to solve every macroeco-
nomic model. Instead, we explain and compare how to use different types of distribution
approximations to solve continuous time models with heterogeneous agents. This offers a
foundational set of techniques that are extended in other papers.

3 Finite Dimensional Master Equation
In this section, we study finite dimensional approximations to the population distribution
g. Let ϕ̂ ∈ Φ̂ ⊆ RN be a finite dimensional parameter vector, which could represent the
collection of agents, the bins in a histogram, or the coefficients in a projection. Let Ĝ be a
mapping from parameters to distributions:

Ĝ : Φ̂→ G, ϕ̂ 7→ Ĝ(ϕ̂) = ĝ

We look for an approximation to the value function of the form:

V̂ : (X ,Z, Φ̂)→ R, (x, z, ϕ̂) 7→ V̂ (x, z, ϕ̂)

that satisfies an approximate master equation:

0 = L̂V̂ = L̂hV̂ + L̂gV̂

where L̂h is the approximate operator for the household optimization problem and L̂g is the
approximate operator for how changes to the distribution approximation impact household
value. The first term, L̂h, is essentially Lh with the distributional approximation substituted
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in:

(L̂hV̂ )(x, z, ϕ̂) := (Lh(ĉ∗,Q̂)V̂ )(x, z, ϕ̂)

= − ρV̂ (x, z, ϕ̂) + u(ĉ∗(x, z, ϕ̂)) + ψ(ĉ∗(x, z, ϕ̂), x, z, ϕ̂)

+DxV̂ (x, z, ϕ̂)µx(ĉ∗(x, z, ϕ̂), x, z, Q̂(z, ϕ̂))

+ 1
2 tr
{

Σx(x, z, Q̂(z, ϕ̂))D2
xV̂ (x, z, ϕ̂)

}
+ λ(x)

(
V̂ (x+ γx(x, z, ϕ̂), z, ϕ̂)− V̂ (x, z, ϕ̂)

)
+ ∂zV̂ (x, z, ϕ̂)µz(z) + 1

2 (σz(z))2
∂zzV̂ (x, z, ϕ̂) (3.1)

where Q̂(z, ϕ̂) := Q(z, Ĝ(ϕ̂)) and ĉ∗ is defined to satisfy:

0 = u′(ĉ∗(x, z, ϕ̂)) + ∂cψ(ĉ∗(x, z, ϕ̂), x, z, ϕ̂)

+DxV̂ (x, z, ϕ̂)∂cµx(ĉ∗(x, z, ϕ̂), x, z, Q̂(z, ϕ̂)) (3.2)

The second term, L̂g, involves a more complicated change to the operator that depends on
the way that the distribution is approximated.

We characterize three distribution approximation approaches. The first approach ap-
proximates the distribution with a finite collection of agents. The second approach approx-
imates the continuous state space by a finite collection of grid points. The third approach
projects the distribution onto a finite set of basis functions. In each case, we show how Ĝ

and L̂g are defined.

3.1 Finite Agent Approximation

Distribution approximation: In this approach, we restrict the model so that the economy
contains a large but finite number of agents N < ∞ agents. In this case, the finite dimen-
sional parameter vector is the vector of agent positions:

ϕ̂t :=
(
xit
)
i≤N .

The mapping Ĝ takes the agents positions and computes the empirical measure:

Ĝ(ϕ̂) = 1
N

N∑
i=1

δxi
t

where δxi
t
denotes a Dirac mass at xit. The evolution ϕ̂t is simply the law of motion for each

agents xit, as described by equation (2.2).
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The Operator L̂g: The market clearing condition now becomes qt = Q(zt, ϕ̂t) = Q(z, Ĝ(ϕ̂t)),
as described in the introduction. However, to maintain the price taking assumption in the
finite agent model, we impose that agent i behaves as if their individual actions do not
influence prices. Formally, this means that agent i perceives the pricing function to be:

qt = Q(zt, ϕ̂−it )

where ϕ̂−it = {xjt ∈ N−i} is the position of the other agents N−i := {j ≤ I : j 6= i}.
Ultimately, this will ensure that the neural network trains the policy rules as if the agents
believe that their assets do not influence the market prices.

Let c∗(xi, z, ϕ̂) denote the equilibrium optimal control. Let V̂ (xi, z, ϕ̂) denote the value
function for the master equation in the economy with I price taking agents. Then V̂ (xi, z, ϕ̂)
solves (L̂V̂ )(xi, z, ϕ̂) = 0, where L̂V̂ = L̂hV̂ +L̂gV̂ , the (approximate) optimization operator
L̂h is given by (3.1), and the (approximate) distribution impact operator L̂g is given by:

(L̂gV̂ )(xi, z, ϕ̂) :=
∑
j 6=i

∂V̂

∂ϕ̂j
(xi, z, ϕ̂)µx(c∗(xj , z, ϕ̂), xj , z,Q(z, ϕ̂−j))

+
∑
j 6=i

1
2 tr
{

Σx(xj , z,Q(z, ϕ̂−j))D2
gj V̂ (xi, z, ϕ̂)

}
+
∑
j 6=i

λ(xj)
(
V̂ (xi, z, {xj + γx(xj , z,Q(z, ϕ̂−j)), ϕ̂−j})− V̂ (xi, z, ϕ̂−i)

)
,

(3.3)

The operator for the impact of distributional changes on the household, L̂g, becomes finite
dimensional because the economy only needs to track the evolution of a finite number of
agents. The notation ∂V

∂ϕ̂j (xi, z, ϕ̂) means that we take the partial derivative of V with re-
spect to the j-th point in ϕ̂, i.e., xjt .

Convergence properties: The solution V (xi, z, ϕ̂) is expected to converge to the solution of
the master equation (2.7) as the number of agents, N , grows to infinity so long V is smooth.
Intuitively, this relies on the idiosyncratic noise in the population distribution averaging
out as the population becomes large, see e.g. Sznitman (1991). Such results have been
extended to systems with equilibrium conditions by the mean field games literature; see
e.g. Cardaliaguet et al. (2015); Lacker (2020); Delarue et al. (2020).

3.2 Discrete State Space Approximation

Distribution approximation: We considerN points in the state space, denoted by x1, . . . , xN ∈
X . We approximate g by a vector ϕ̂ ∈ RN , whose values represent the masses at x1, . . . , xN .
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The mapping Ĝ then takes the form:

Ĝ(ϕ̂) =
N∑
n=1

ϕ̂n,tδxn

where again δxn
denotes a Dirac mass at xi. Conceptually, the finite agent approximation

fixes the mass associated to each xit and allows the xit values to move whereas the discrete
state space approximation fixes the grid points xi and allows the masses at each grid point
to move.

We determine µ̂ϕ̂ as an approximation to the KFE (2.6). The KFE under optimal
control (2.6) is replaced by an ordinary differential equation in dimension N of the form:

dϕ̂t = µ̂ϕ̂(zt, ϕ̂t)dt (3.4)

describing the evolution of mass at the values at x1, . . . , xN . The right-hand-side needs to
be obtained using information from the KFE (2.6). In our numerical examples we use a
finite difference approximation to the KFE to derive µ̂ϕ̂, analogous to the approximation
described in Achdou et al. (2022). However, the technique can be applied to other types of
approximations, like the finite volume method used by Huang (2022). To be specific, let us
consider the approximation of the KFE equation (2.6) using a finite difference scheme. The
evolution of ϕ̂, based on the evolution of g (assuming that the agent has the correct belief,
i.e., µ̃g = µg), is of the form (3.4) where, for z ∈ R and ϕ̂ ∈ RN , for every n = 1, . . . , N ,

µ̂ϕ̂,n(z, ϕ̂) := −Dx[Mt(z, ϕ̂)ϕ̂]n + 1
2D

2
x[(σx(z))2ϕ̂]n

+ λ((1− γ′(xn, z, Q̂(z, ϕ̂))ϕ̂(xn − γ(xn, z, Q̂(z, ϕ̂)))− ϕ̂n),

with Q̂(z, ϕ̂) = Q(z, Ĝ(ϕ̂)) and Mt(z, ϕ̂) ∈ RN is defined by:

Mn,t(z, ϕ̂) = µx(c∗t (xn, z, ϕ̂; µ̂ϕ̂), xn, z, Q̂(z, ϕ̂))

and the finite difference operators Dx : RN → RN and D2
x : RN → RN approximate respec-

tively the first and the second order differential operators in space when the functions are
represented by values at the points of the grid x1, . . . , xN .

The operator L̂g: The operator L̂g in the approximate master equation is defined by:

(L̂gV̂ )(x, z, ϕ̂) =
N∑
n=1

µ̂ϕ̂,n(z, ϕ̂) ∂V̂
∂ϕ̂n

(x, z, ϕ̂), (3.5)

where µ̂ϕ̂(z, ϕ̂) = (µ̂ϕ̂,1(z, ϕ̂), . . . , µ̂ϕ̂,N (z, ϕ̂)) is the vector characterizing the evolution of
the approximate distribution on the state space, as described above.
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Convergence properties: Once again, we expect the solution of the approximate master
equation V (x, z, ĝ) to converge towards the solution of the true master equation (2.7) so
long V is smooth. Convergence of mean field games with discrete state spaces to mean field
games with continuous state spaces has been proved in Bayraktar et al. (2018); Hadikhanloo
and Silva (2019) without noise or with idiosyncratic noise, and in in Bertucci and Cecchin
(2022) with common noise.

3.3 Projection onto Basis

Distribution approximation: In this approach, we represent the distribution gt by functions
of the form

ĝt(x) = Ĝ(ϕ̂t)(x) := b0(x) +
N∑
n=1

ϕ̂n,tbn(x),

where ϕ̂t := (ϕ̂1,t, ..., ϕ̂N,t) ∈ Φ̂ := RN is a vector of real-valued coefficients and b0, b1, ..., bN
is a collection of linearly independent real-valued functions on X that satisfy

∫
X
bn(x)dx =

1, n = 0

0, n ≥ 1
(3.6)

and we refer to as the basis of the projection. To complete this approximation description
we need to specify the the law of motion for µϕ̂ and the choice of basis.

We derive µϕ̂ as an approximation to the KFE (2.6). For the projection approach, we
can flexibly focus the approximation accuracy on pre-selected statistics of the distribution.
This is useful in economic problems where we know certain statistic of the distribution are
particularly important for calculating prices through qt = Q(zt, gt). To make this precise,
we start with the integral form of the KFE (2.6):

d
∫
X φ(x)gt(x)dx

dt
=
∫
X
φ′(x)µx(c∗t (x, zt, gt), x, zt, Q(zt, gt))gt(x)dx

+ 1
2

∫
X
φ′′(x)(σx(zt))2gt(x)dx

+
∫
X
λ(x) (φ (x+ γ(x, zt, Q(zt, gt)))− φ(x)) gt(x)dx

=: µφ(zt, gt; c∗)

that has to hold for all “test functions” φ : X → R on a suitable space. This variant of the
KFE describes the time evolution of all statistics

∫
X φ(x)gt(x)dx of the distribution. For

our approximation, we selectM test functions (φ1, ..., φM ) that describe statistics of interest
whereM ≥ N . Given this selection, we define the coefficient drifts µϕ̂,n(z, ϕ̂) (conditional on
the aggregate state (z, ϕ̂)) as the regression coefficients that minimize, in the least-squares

15



sense, the M linear regression residuals6

εm(z, ϕ̂) := µφm
(z, Ĝ(ϕ̂); ĉ∗)−

N∑
n=1

µϕ̂,n(z, ϕ̂)
∫
X

φm(x)bn(x)dx, m = 1, ...,M.

where µφm
(z, Ĝ(ϕ̂); ĉ∗)

The approximation presented so far works, in principle, for any choice of basis. Here we
propose a basis that approximately tracks the persistent dimensions of gt while neglecting
those dimensions that mean-revert fast. These persistent dimensions of the distribution are
related to certain eigenfunctions of the differential operator characterizing the KFE (2.6).
Because this differential operator is generally time-dependent and stochastic, we first replace
it by a time-invariant steady-state operator LKF,ss defined as the KFE operator in a sim-
plified model with common noise set to zero and under the assumption that the aggregate
states have reached a steady state, zt = z̄ and gt = gss.7 Let {bi : i ≥ 0} be the set of
eigenfunctions of LKF,ss with corresponding eigenvalues {λi ∈ R : i ≥ 0}. If the dynamics
prescribed by the KFE are locally stable around the steady state gss, there is one eigenvalue
λ0 = 0 with eigenfunction b0 = gss and all remaining eigenvalues have negative real part,
<λi < 0. We pick as our basis b0, b1, ..., bN the N + 1 eigenfunctions corresponding to eigen-
values with real parts closest to zero as these represent the most persistent components. We
provide further details on this basis choice in Appendix C.

The operator L̂g: The operator L̂g in the approximate master equation is defined by

(L̂gV )(x, z, ϕ̂) =
N∑
n=1

µϕ̂,n(z, ϕ̂) ∂V
∂ϕ̂n

(x, z, ϕ̂).

Convergence: There are fewer results about convergence for projections in the mean-field-
game literature. However, in discrete time, Prohl (2017) has proven convergence results for
various projections.

3.4 Comparison

Table 1 summarizes the key differences between the distribution approximations: a finite
population, a discrete state space, and a projection onto a finite set of basis functions.
We discuss how these approximations compare with regard to typical computational diffi-
culties:

1. Dimensionality (N): The approximation dimension needs to be large enough to cap-
ture sufficient shape in the distribution. The projection method can potentially have

6In practice, the integral terms appearing in the residual formula have to be computed either analytically
(if possible) or by numerical quadrature.

7This basis approximately tracks the persistent dimensions of gt if LKF,ss is similar to full stochastic
operator LKF , which is plausible because they share many similar features.
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Finite Population Discrete State Projection

Distribution approx. 1
N

∑N
i=1 δxi

t

∑N
n=1 ϕ̂n,tδxn

∑N
n=0 ϕ̂n,tbn(x)

KFE approx. Evolution of other
agents’ states

Evolution of mass
between discrete
states

Evolution of projec-
tion coefficients

Table 1: Comparison of Distribution Approximations

the lowest dimension if the choice of basis is efficient (N = 5 in our examples). The
finite population needs to be large enough to average out idiosyncratic noise (N = 40
in our examples). The discrete state space needs to be sufficiently fine to approximate
the derivatives in the KFE, which means it needs a high dimension (N = 200 in our
examples).

2. Customization: For the finite agent approach, we just choose N . For the discrete state
space approach, we choose a grid and a method for approximating the KFE on the
grid points. For the projection method, we choose a set of basis function and a set of
statistics on which to minimize the error. In this sense, the projection is potentially
lower dimensional because we need to make more intelligent choices in the setup.

3. Computational “bottlenecks”: Each method has its own computational bottlenecks.
For the finite agent method, we need to switch agent positions in the neural network
approximation to V when we calculate the derivatives of V with respect to the other
agent positions in equation (3.3). For the discrete state space method, the dimen-
sionality of the approximation is the main computational problem. For the projection
method, determining the drift µϕ̂ of the distribution approximation is computationally
involved as we need to solve a linear regression problem and compute several integrals
by quadrature for every single evaluation of the master equation.

4. Nature of the distribution interaction: If agent decisions only depend upon a low
dimensional moment of the distribution, then we find that using the finite agent ap-
proach (potentially coupled with dimension reduction) works well. This will be case
in the variations on the Krusell and Smith (1998) that we study in this paper (and
most other macro deep learning papers have studied). However, if the agent decisions
really depend on the shape of the distribution, then other approximations look more
attractive. For example, Payne et al. (2024) deploys these techniques in a Search and
Matching framework using the discrete state space approximation.
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4 Solution Approach
All approaches in section 3 lead to finite approximations to the density, ĝ, and the master
equation operator L̂. However, the resulting master equations are high dimensional and
so cannot be solved by traditional numerical techniques. Instead, we replace the solution
to the approximate master equation by a neural network and deploy tools from the “deep
learning” literature to “train” the neural network to solve the approximate master equation.

4.1 Neural Network Approximations

A neural network is a type of parametric functional approximation that is built by composing
affine and non-linear functions in a chain or “network” structure (see Goodfellow et al. (2016)
for a detailed discussion). We let X̂ := {x, z, ϕ̂} denote the collection of inputs into the
approximate value function. We denote the neural network function to the value function
by V (X̂) ≈ V̂ (X̂; θ), where θ are the parameters in the neural network approximation that
depend upon the architecture, i.e., the form of the approximation. There are many types of
neural network approximations. The simplest form is a “feedforward” neural network which
is defined by:

h(1) = φ(1)(W (1)X̂ + b(1)) . . .Hidden layer 1

h(2) = φ(2)(W (2)h(1) + b(2)) . . .Hidden layer 2
...

h(H) = φ(H)(W (H)h(H−1) + b(H)) . . .Hidden layer H

o = W (H+1)h(H) + b(H+1) . . .Output layer

V̂ = φ(H+1)(o) . . .Output

(4.1)

where the {h(i)}i≤H are vectors referred to as “hidden layers” in the neural network,
{W (i)}i≤(H+1) are matrices referred to as the “weights” in each layer, {b(i)}i≤(H+1) are
vectors referred to as the “biases” in each layer, {φ(i)}i≤(H+1) are non-linear functions ap-
plied element-wise to each affine transformation and referred to as “activation functions”
for each layer. The length of hidden layer, h(i), is defined as the number of neurons in
the layer, which we refer to as #h(i). The total collection of parameters is denoted by
θ = {W (i), b(i)}i≤(H+1). The goal of deep learning is to train the parameters, θ, to make
V̂ (·; θ) a close approximation to V .

The neural network defined in (4.1) is called a “feedforward” network because hidden
layer i cannot depend on hidden layers j > i. This is in contrast to a “recurrent” neural
network where any hidden layer can be a function of any other hidden layer. It is called
“fully connected” if all the entries in the weight matrices can be non-zero so each layer can
use all the entries in the previous layer. In this paper, we will consider a fully connected
“feedforward” network to be the default network. This is because these networks are the
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quickest to train and so we typically start by trying out this approach. However, there
are applications where we find that more complicated neural network architectures are
useful. In particular, we find that the type of recurrent neural network suggested by the
Deep Galerkin Method in Sirignano and Spiliopoulos (2018) is helpful for discrete state and
projection approximations.

4.2 Solution Algorithm

We train the neural network to learn parameters θ that minimize the error in the master
equation and boundary conditions. We describe the key steps in Algorithm 1.8 Essentially,
the algorithm samples random points in the discretized state space {x, z, ϕ̂}, then calculates
the master equation on those points under the current neural network approximation, and
then updates the neural network parameters to decrease the error in the master equation.
In fact, the loss consists of two terms: Ee for the PDE residual and Es, which is used to
incorporate information about the shape of the solution (e.g., monotonicity or concavity).
Specific examples of these functions will be discussed in the following sections. In the deep
learning literature, this approach is sometimes referred to as “unsupervised” learning (e.g.
Azinovic et al. (2022)) because we do not have direct observations of the value function,
V (x, z, ĝ), and instead have to learn the value function indirectly via the master equation.

Although the algorithm is straightforward to describe at the high level, implementing
the deep learning training scheme successfully involves a lot of complicated decisions. We
discuss some of the key details below.

4.2.1 Sampling

A very important implementation aspect of our solution algorithm is the approach used to
sample the set of training points S in each iteration of the algorithm. Sampling ultimately
has to be tailored to the specific application at hand, possibly by experimenting with var-
ious options. This is a fundamental difference between deep learning for continuous time
and discrete time techniques. Discrete time models need to calculate expectations and so
typically need to use simulation to approximate the expectation operator. Continuous time
models replace the expectation term in the Bellman equation by the derivative terms in the
HJBE and then sample points on which to evaluate the HJBE. This gives continuous time
techniques more flexibility in how to sample but can also make the sampling task harder.
The following general considerations are relevant when deciding on how to sample.

First of all, we can treat the three components of training points, the idiosyncratic state
x, the aggregate exogenous state z, and the distribution state ϕ̂ separately by sampling
them independently. The separation between x and ϕ̂ deserves particular emphasis in the

8The generic pseudo-code given in Algorithm 1 can be modified in practice. For example, instead of
fixing a precision threshold, one can fix a number of iterations, and instead of using a fixed sequence of
learning rates, one can use an adaptive method, such as Adam.
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Algorithm 1: Psuedo Code for Generic Solution Algorithm
Input : Initial neural network parameters θ0, number of sample points M ,

positive weights κe and κs on the master equation errors; sequence of
learning rates {αn : n ≥ 0}, precision threshold ε

Output: A neural network approximation (x, z, ϕ̂) 7→ V̂ (x, z, ϕ̂; θ) of the value
function.

1: Initialize neural network object V̂ (x, z, ϕ̂; θ) with parameters θ.
2: while Loss > ε do
3: Generate M new sample points, Sn = {(xm, zm, ϕ̂m)}m≤M .
4: Calculate the weighted average error:

E(θn, Sn) = κeEe(θn, Sn) + κsEs(θn, Sn)

where Ee is the master equation error and Es is a penalty for a “wrong” shape. Ee is
taken to be the mean-squared error:

Ee(θn, Sn) := 1
|Sn|

∑
(x,z,ϕ̂)∈Sn

|(L̂V̂ (x, z, ϕ̂; θn))|2

where the derivatives in the operator L̂ are calculated using automatic
differentiation. The definition of Es depends on the problem (see examples in the
next sections).

5: Update the parameters using “stochastic gradient descent”:

θn+1 = θn − αnDθE(θn, Sn)

where DθE is the gradient (i.e., vector differential) operator.
6: end while
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context of the finite agent approximation, for which also ϕ̂ contains a sample of x-points (for
the other agents). This is because we can focus the sampling on regions of the idiosyncratic
state space with high curvature without having to simulate a lot of distributions that have
agents hitting constraints. This is an important advantage to simulation based approaches
that learn regions of high curvature by increasing the sample size to get enough agents in
the high curvature regions in the simulation time series.

Sampling x and z is less complicated because their dimension is usually relatively low.
For example, in macro models a typical dimension of x is 2 and a typical dimension of z is 1.
For these variables, we typically sample from a pre-specified statistical distribution such as
a uniform or normal distribution. The sampling can be refined by adopting a strategy called
“active sampling” (see, e.g., Gopalakrishna (2021) and Lu et al. (2021a)) that adapts the
sampling during training to actively learn in regions where the algorithm is having trouble
minimizing the loss function. This is achieved by regularly inspecting the losses during
training and adding training points to regions with the largest losses.

Sampling the distribution approximation ϕ̂ is significantly more complicated. This is
because it is typically high-dimensional and so we can only train the neural network on
a very small subset of the total possible distributions. In this sense, deep learning does
not break the “curse of dimensionality”. Instead, it gives flexibility to train on a useful
subspace that gives enough information to the value function for economically relevant
distributions. This means that choosing the right subspace to sample on is very important
for the algorithm to converge in reasonable time (or at all). Ultimately, this requires us to
use some information about the model solution in the sampling. We have focused on the
following three sampling schemes that use different information from the model solution:

(i) Moment sampling: We first draw samples for selected moments of the distribution that
are important for calculating prices Q̂(z, ϕ̂). We then sample ϕ̂ from a distribution that
satisfies the moments drawn in the first step. For example, in many macroeconomic
model, the mean of the distribution is particularly important for calculating prices. In
this case, we would sample from the mean and then draw ϕ̂ from a distribution with
that mean. This final step could involve sampling from pre-specified distribution (e.g.
uniform) or from an ergodic distribution, as described in (iii).

(ii) Mixed steady state sampling: We first solve for the steady state for a collection of
fixed aggregate states z. This needs to be done only once before training begins. We
then draw in each training step random mixtures of this collection of steady state
distributions. In an optional final step, we introduce additional random variation in
the sampling of ϕ̂ by adding perturbations drawn from a pre-specified distribution
(e.g. uniform).9

(iii) Ergodic sampling: We adapt the training sample dynamically by regularly simulating
9Without these perturbations, the random mixtures remain strictly confined to a subspace whose dimen-

sion (the number of steady states in the collection) is typically much smaller than dim Φ̂.
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the model economy based on the candidate solution for the value function from a
previous iteration.

Two additional issues arise in sampling schemes that adapt the training sample dynam-
ically, such as active sampling (for x and z) and ergodic sampling (for ϕ̂). First, these
schemes only adapt the sampling distribution in a meaningful way if the current guess for
the value function is sufficiently good. It is therefore advisable to start with a pre-specified
sampling distribution in early training and switch to a dynamic sampling scheme later on.
Second, dynamically adapting the sample might lead to instability of training due to feed-
back effects between the training sample and the trained solution. We have found this issue
to be particularly relevant for ergodic sampling. To mitigate the issue, a combination of two
remedies has worked well in our numerical experiments: (i) to use ergodic sampling only
for a fraction of the training sample and (ii) to update training points by simulating over a
small time interval frequently instead of simulating over a long time interval infrequently.10

At a high level, we have found the following sampling strategies are useful for the different
types of distribution approximations. For the finite agent approximation, we found moment
sampling to be simple and effective because the ϕ̂ variables have a natural interpretation
as the idiosyncratic (x) states of the other agents in the population and so it is straight-
forward to determine a region of “typical” values to sample from. For the discrete state
space approximation, we found the most stable approach was to start with mixed steady
state sampling and move to ergodic sampling once the neural network started to converge.
For the projection approximation, we found that a combination of moment sampling and
ergodic sampling was effective. To put moment sampling to work with projections requires
a rotation of the basis functions so as to isolate components that correspond to the selected
moments, see Appendix A.2 for details. We discuss all three sampling strategies in detail
for our Krusell and Smith (1998) example in Appendix A.3.2.

4.2.2 Extensions

In this subsection we consider two extensions to our algorithm that are potentially relevant
for economic problems.

Boundary conditions: Algorithm 1 is suitable for solving a problem that does not include
boundary conditions. This is sufficient for our purposes because we have “softened” any hard
constraints in the problem by replacing them with a utility flow penalty (see Section 2.2). In
principle, the solution algorithm could be extended to a problem that does require boundary
conditions. In this case, we would need to sample an second sample Sb of training points on
the boundary in step 3 and, in step 4, add an additional error term Eb (with corresponding

10In particular, despite the name “ergodic sampling”, we do not insist on drawing training points from
the ergodic distribution implied by the current value function candidate. Instead, the ergodic distribution
is reached only gradually once the value function is close to convergence.
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weight κb) for the mean-squared error of boundary condition residuals evaluated at the
training set Sb. All other aspects of the algorithm would remain unchanged.

That being said, while conceptually straightforward, we have found in the context of
our example model that the inequality boundary conditions arising from hard constraints
represent a significant difficulty for the robustness of our solution algorithm. Specifically,
we observed that the neural network only learns an accurate solution if the weights on equa-
tion residuals (κe) and the boundary condition (κb) in the loss function are well-calibrated.
Replacing the hard constraints by a soft penalty makes the method much more robust.

Separate network for policy function ĉ∗ and staggered updating: In Algorithm 1, when evalu-
ating the master equation residuals to determine Ee, we compute the policy ĉ∗ as a function
of V̂ (·; θ) according to equation (3.2). There is therefore no need to parameterize the policy
ĉ∗ with a separate neural network. However, there may be reasons to include a separate
neural network for ĉ∗, as suggested by Duarte (2018).

First, if equation (3.2) does not have a closed form solution, the computational cost
of solving this equation numerically for every point in the training sample (and in every
iteration) may be prohibitively high. In this case, we could include a separate neural network
for ĉ∗ with separate parameters θc and use this network in place of the true solution to
equation (3.2) to evaluate the master equation residuals. This would necessitate training of
the ĉ∗-network as well by adding, after step 5, one or several iterations to train θc to solve
the algebraic equation (3.2). Each of these iterations involves steps analogous to steps 3, 4,
and 5 in Algorithm 1.

Second, even if equation (3.2) can be solved, adding a separate neural network for ĉ∗

allows us to slow down the updating of the policy function akin to a “Howard improvement
algorithm”. To do so, we can make the updating of θc infrequent, effectively fixing the same
policy rule ĉ∗ for several iterations in the training of θ. In some implementations for our
numerical example we use this variant of our baseline algorithm. We have found that this
can help with stability, particularly when starting from a poor (e.g. random) initial guess.

4.2.3 Other Features

There are some features of the algorithm that are typical to deep learning problems but less
common for other techniques in economics so we address them here:

(i). Why do we draw a new sample each epoch rather than fixing a sample from the start?
We find that fixing the sample across epochs leads to overfitting problems where the
neural network matches the master equation solution at the sample points well but
interpolates poorly in the rest of the state space.

(ii). Could the same algorithm be run with an alternative parametric approximation such
as Chebyshev polynomials? In principle, it is possible. But, the key features of the
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training algorithm are that we need to be able to calculate automatic derivatives
and solve a high dimensional non-linear optimization problem. The machine learning
literature has invested heavily in getting non-linear optimizers to work well with neural
networks and automatic differentiation. We are borrowing from these developments.

(iii). Does this algorithm solve for the global or local minimum? The stochastic gradient
descent algorithm (or one of its variants, such as Adam) calculates the loss on random
collections of points and so has some ability to wander the parameter space looking
for the global minimum. However, it is often sufficient to find a local minimum that
is a reasonably approximation.

(iv). Why do we need shape constraints? We find that deep learning algorithms can “cheat”
by finding “bad” approximate solutions. For example, they are likely to find solutions
where the value function has zero derivative with respect to dimensions where there
is limited curvature. More generally, it seems that in some instances there are local
minima which are quite easily learnt by the neural network and yet are very different
from the true solution. We find that enforcing shape constraint such as monotonicity
or concavity helps prevent the algorithm getting stuck at these solutions.

(v). What about introducing a false time transient? Gopalakrishna (2021) proposes to
introducin a “false” time-step into the problem for the purpose of eliminating “cheat”
solutions. We have not found this necessary (or computationally implementable for
high dimensional models). Instead, we find that using shape constraints to eliminate
bad approximate solutions works well in our case.

(vi). What about imposing symmetry and/or dimension reduction? Han et al. (2021) and
Kahou et al. (2021) suggest feeding the distribution through a preliminary neural
network that reduces the dimension and imposes symmetry; see also Germain et al.
(2022a) in the case of social optima. In our numerical experiments with finite agent
approximation, we find that we can solve the problem with and without this approach.
However, we do find that when we impose dimension reduction the accuracy of our
solution is very sensitive to how much dimension reduction is done. For the discrete
state space method, we find it is important to impose a form of dimension reduction
in order to keep the size of the neural network manageable.

5 Example: Uninsurable Income Risk and TFP Shocks
A canonical macroeconomic model with heterogeneous agents and aggregate risk is Krusell
and Smith (1998), which we refer to as the KS model. In this section, we illustrate how our
three solution approaches can be deployed to solve the model.
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5.1 Model Specification

In this subsection, we briefly explain how the KS model fits into our general framework. We
have included a more detailed derivation of the master equations for the Aiyagari (1994)
and Krusell and Smith (1998) models in our: “Online Appendix: Krusell and Smith (1998)
Model”.

Setting: There is a perishable consumption good and a durable capital stock. The econ-
omy consists of a unit continuum I = [0, 1] of households and a representative firm. The
representative firm controls the production technology, which produces consumption goods
according to the production function:

Yt = eztKα
t L

1−α
t

where Kt is the capital rented at time t, Lt is the labour hired at time t, and zt is the
aggregate productivity, which follows an Ornstein-Uhlenbeck process:

dzt = η(z − zt)dt+ σdB0
t

with lower and upper reflecting boundaries at zmin and zmax respectively.

Households: Each household i ∈ [0, 1] has discount rate ρ and gets flow utility u(cit) =
(cit)1−γ/(1 − γ) from consuming cit consumption goods at time t. Each household has two
idiosyncratic states xit = [ait, lit], where ait is the household’s net wealth and lit ∈ {l1, l2} is
the household’s labor endowment, where n1 < l2 so l1 is interpreted as unemployment and
l2 is interpreted as employment. Labor endowments switch idiosyncratically between l1 and
l2 at Poisson rate λ(lit). Households choose consumption cit and their idiosyncratic state
evolves according to:

dxit = d

ait
lit

 =

s(ait, lit, cit, rt, wt)
0

 dt+

 0

ľit − lit

 dJ it
where rt is the return on household wealth, wt is the wage rate, ľit is the complement of lit,
J it is an idiosyncratic Poisson process with arrival rate λ(lit), and the agent’s saving function
is given by:

s(a, l, c, r, w) = wl + ra− c.

So, gt denotes the population density across {ait, lit} at time t, given a filtration F0
t generated

by the sequence of aggregate productivity shocks.
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Assets, markets, and financial frictions: Each period, there are competitive markets for
goods, capital rental, and labor. We use goods as the numeraire. We let rt denote the
rental rate on capital, wt denote the wage rate on labor, and qt = [rt, wt] denote the price
vector. Given gt and zt, firm optimization and market clearing imply that, given gt, the
prices rt and wt solve:

rt = ezt∂KF (Kt, L)− δ, wt = ezt∂LF (Kt, L),

Kt =
∑

j∈{1,2}

∫ ∞
a

agt(a, lj)da L =
∑

j∈{1,2}

∫ ∞
a

ljgt(a, lj)da.

So, in the terminology of Section 2, we write the prices explicitly as functions of (gt, zt):

qt =

rt
wt

 =

∂KF
(∑

j∈{1,2}
∫∞
a
agt(a, lj)da, L

)
− δ

∂LF
(∑

j∈{1,2}
∫∞
a
agt(a, lj)da, L

)
 =: Q(gt, zt) (5.1)

Asset markets are incomplete so households cannot insure their idiosyncratic labor
shocks. Instead, households can trade claims to the aggregate capital stock in a competitive
asset market. The original Krusell and Smith (1998) model imposes the “borrowing con-
straint” that each agent’s net asset position, ait, must satisfy ait ≥ a, where a is an exogenous
“borrowing limit”. This generates an inequality boundary constraint and a mass point, as
discussed in Achdou et al. (2022). However, this causes difficulties for the neural network.
So, to make the problem more tractable, we instead follow Brzoza-Brzezina et al. (2015)
and introduce a penalty function ψ at the left boundary, replacing the agent flow utility by:

U(at, ct) = u(ct) + 1at≤aψ(at).

The penalty function we use here is the quadratic function: ψ(a) = − 1
2κ(a− a)2 where κ is

a positive constant.

Master equation: Let c∗(a, l, g, z) denote the equilibrium optimal household control. Then,
the master equation for the ABH model is given by the following:

0 = (LV )(a, l, z, g) = (LhV )(a, l, z, g) + (LgV )(a, l, z, g),
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where the operators Lh and Lg are defined by:

(LhV )(a, l, z, g) := − ρV (a, l, z, g) + u(c∗(a, l, z, g)) + 1a≤aψ(a)

+ ∂aV (a, l, z, g)s(a, l, c∗(a, l, z, g), r(g), w(g))

+ λ(y)(V (a, ľ, z, g)− V (a, l, z, g))

+ ∂ZV (a, l, z, g)η(z − z) + 1
2σ

2∂zzV (a, l, z, g)

(LgV )(a, l, z, g) :=
∫ ∞
a

∂V

∂g
(a, l, z, g)(b)

(
λ(l̃)g(b, l̃)− λ(y)g(b, l)

)
db

+
∫ ∞
a

∂b
∂V

∂g
(a, l, g)(b)s (a, l, c∗(a, l, z, g), r(g, z), w(g, z)) g(b, l)db,

where ľ denotes the complement of l, where r(g) and w(g) solve the system of equations
(5.1), and the optimal consumption policy satisfies the first order optimality condition:

∂aV (a, l, z, g) = u′(c∗(a, l, z, g)).

In the next sections, we solve this master equation numerically using Algorithm 1. Be-
cause the optimal control is a function of the ∂aV (a, l, z, g), it will turn out to be more
convenient to solve the master equation for the partial derivative, which we denote by
W (a, l, z, g) := ∂aV (a, l, z, g). The parameters that we use in numerical experiments are in
Appendix A.1.

5.2 Implementation Details

The implementation details for all methods are summarized in Table 2. Here we discuss
some key features about the neural network structure, the sampling, and the loss function.
We provide a more detailed description of the implementation in Appendix A.3.

First, consider the neural network structure. For the finite population approximation,
we use a “plain vanilla” fully connected feed-forward neural network with 5 layers and
64 neurons per layer. We choose a tanh activation function in all hidden layers and a
softplus activation in the output layer to ensure that the output is always positive. For
the remaining two approximation methods, we use an architecture that combines the one
proposed by Sirignano and Spiliopoulos (2018) (“recurrent”) and a fully connected feed-
forward network (“embedding”). The latter network is used to preprocess the distribution
state ϕ̂ before the result is passed to the main (recurrent) network. The recurrent portion of
the network has 3 layers and 100 neurons per layer. The embedding portion has an output
dimension of 10, 2 layers, and 128 neurons per layer for the discrete state space method and
64 neurons per layer for the projection method. We apply an elu activation in the last layer
of the recurrent network to ensure positivity of the output. In addition, we multiply the
neural network output by the factor (a0 + a)−η̃, where a0, η̃ ≥ 0 are non-trainable shape
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Finite Population Discrete State Projection

Neural Network
(i) Structure Fully connected

feed-forward
Recurrent with
embedding

Recurrent with
embedding

(ii) Activation, (φ(i))i≤H tanh tanh tanh
(ii) Output, φ(H+1) soft-plus elu activation and

factor (a0 + a)−η̃
elu activation and
factor (a0 + a)−η̃

(iii) Layers, H 5 recurrent: 3
embedding: 2

recurrent: 3
embedding: 2

(iv) Neurons, #|h| 64 recurrent: 100
embedding: 128

recurrent: 100
embedding: 64

(v) Initialization W (a, ·) = e−a random random
(vi) Auxiliary networks none consumption consumption
Sampling
(i) (a, l) Active sampling

[a, a]× {y1, y2}
Uniform sampling
[a, a]× {y1, y2}

Uniform sampling
[a, a]× {y1, y2}

(ii) (ϕ̂i)i≤N Moment sampling:
sample r and then
random distribu-
tion of agents to
generate r

Mixed steady-
state sampling
ergodic sampling

Moment sam-
pling: sample K
and then orthog-
onal coefficients
uniformly
ergodic sampling

(iii) z U [zmin, zmax] U [zmin, zmax] U [zmin, zmax]
Loss Function
(i) Master equation Ee Ee Ee

(ii) Constraints ∂aW (a, ·) < 0 and
∂zW (a, ·) < 0

∂aW (a, ·) < 0 and
∂zW (a, ·) < 0

∂aW (a, ·) < 0 and
∂zW (a, ·) < 0

(iii) Weights κe = 100, κs = 1 κe = κs = 1 κe = κs = 1
Training
(i) Learning rate 10−4 Decaying from

3× 10−4 to 10−6
Decaying from
3× 10−4 to 10−6

(ii) Optimizer ADAM ADAM ADAM

Table 2: Key Implementation Details
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parameters. The additional factor aids training by reducing the amount of curvature in the
marginal value function that must be captured by the neural network. Finally, in both the
discrete state and the projection method, we use the variant of our solution algorithm with
staggered updating of the consumption function and parameterize the latter by a separate
auxiliary neural network that has the same structure as the one for the marginal value
function with the exception that we do not multiply the network output by (a0 + a)−η̃ in
the output layer.

Second, consider the sampling. For the finite agent approach, we use moment sampling.
As we discuss in Subsections 5.5 and 5.6, this allows us to consider unanticipated shocks
and the introduction of parameters as auxiliary inputs for the purposes of calibration. For
the other techniques, we need to partially rely on ergodic sampling, which makes it very
difficult to consider similar kinds of experiments.

For the discrete state approach, our main approach is ergodic sampling. As discussed in
Section 4.2.1, this sampling scheme is only meaningful once a sufficiently good guess of the
value function exists. We therefore start with mixed steady state sampling in early training
and gradually increase the fraction of the training set taken from the ergodic sample.

For the projection approach, we use a variant of moment sampling for sampling capital
stocks K from a uniform distribution. To be able to do this, we rotate the basis, such
that the first basis vector points in the direction of increasing first moments (in the a-
dimension) and all other basis vectors are orthogonal to the first. This rotation leaves the
space of approximate distributions unaffected but leads to a one-to-one relationship between
the aggregate capital stocks and the first component of the distribution state ϕ̂. For the
remaining components of ϕ̂ we use a combination of uniform and ergodic sampling and
gradually increase the fraction of the training set taken from the ergodic sample.

Third, consider the loss function. In all cases, we impose concavity constraints on V ,
which are equivalent to monotonicity constraints on W . In addition, we found it was very
helpful to impose constraints on ∂azV . This is because KS model actually has limited
curvature with respect to z and so the Neural network tended to find approximate solutions
where the z component was ignored.

Finally, consider the neural network training. In all cases, we choose an ADAM optimizer
to perform the gradient descent steps. We fix the learning rate at 10−4 throughout for the
finite agent approach, whereas we use a learning rate schedule with decaying learning rate
(from 3× 10−4 to 10−6) for the remaining approaches.

5.3 Mean Reverting Aggregate Productivity Process

We solve the Krusell-Smith model using the three methods. The error in the master equation
is shown in Table 3 below. Evidently all approaches have master equation losses to the
approximate order of 10−5.
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Master equation training loss

Finite Agent NN 3.037× 10−5

Discrete State Space NN 9.639× 10−5

Projection NN 8.506× 10−6

Table 3: Neural Networks’ results for solving master equations with aggregate shocks. The
master equation loss is Ee evaluated on sampled data generated in Appendix A.3.2.

Because there are aggregate shocks in the Krusell-Smith model, we do not have a clear
benchmark because there is no traditional technique that provides an accurate solution to
the model with aggregate shocks. However, we can compare to widely used approxima-
tion techniques in the literature. In particular, we compare to the approach suggested by
Fernández-Villaverde et al. (2023), which uses a neural network to approximate a statistical
law of motion but solves the Master equation using a finite difference scheme.

We compare to Fernández-Villaverde et al. (2023) by computing sample paths from all
of our solution approaches. For the discrete state space and projection methods, we can
generate sample paths by iterating the approximate KFE. For the finite agent method,
computing the sample path is more complicated. We describe how we generate sample
paths for the neural network solution in Algorithm 2 below. Essentially, we draw a series
of productivity shocks from the Ornstein-Uhlenbeck process: dzt = η(z − z)dt+ σdB0

t and
then evolve the population distribution by adding zt to Algorithm 3 for the ABH model
described in Section 5.5.

Figure 1 offers a visual inspection of the difference between our neural network solution
and Fernández-Villaverde et al. (2023) for a particular path of productivity shocks. The
upper-left panel shows the draw from the Ornstein-Uhlenbeck process: dzt = η(z − z)dt +
σdB0

t . The upper left compares the evolution of capital stock. The second row plots compare
the evolution of prices. The third and fourth row plots compare the population distribution
at various times in the distribution. As can be seen in Figure 1, we get a similar path for
aggregate capital stock, interest rates, wage rates, and the population distribution across
all the methods.

In Figure 2, we generate multiple random TFP paths, zt, and show the evolution of our
Neural Network solution and solution in Fernández-Villaverde et al. (2023) in a “fan chart”
that displays percentiles for the evolution of the population. In particular, we generate 1000
TFP paths starting from z0 = 0 and calculate the corresponding aggregate capital evolution
paths. We compute capital at different time t, sort to get the pth-quantile and plot the
time series of the quantiles. Evidently, the finite agent and projection techniques are a
close match to the Fernández-Villaverde et al. (2023). The discrete state space approach
does a good job at lower quantiles but has more difficulty at the extremes. In general, our
experience is that the discrete state space approximation was most difficult to work with.
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Figure 1: Simulations for the Krusell-Smith Model. The top left plot is the TFP shock path,
the top right panel is the aggregate relative capital change. The second row left plot shows
the relative change in the capital return and the second row right plot shows the relative
change in the wage rate. The plots on the rows three and four show the distribution at
different times in the simulation. NN, FA refers to the finite agent neural network, NN,
DS refers to the discrete state space neural network, NN, P refers to the projection neural
network, and FV refers to the result generated from Fernández-Villaverde et al. (2023).
Subscript sss refers to the stochastic steady state at z = 0.
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Figure 2: Forcasted aggregate capital dynamics starting from the stochastic steady state
(sss) for the Krusell-Smith Model. The top left plot is the fan chart for the TFP shock path,
generated from OU process with initial condition z0 = 0. The middle left panel and all right
panels are fan charts (capital quantile) of corresponding responses generated by Fernández-
Villaverde et al. (2023) and the three neural network techniques. The bottom left panel
is the time series plot for relative change in aggregate capital at quantile 10%, 30%, 50%,
70%, 90% (from the lowest to the highest), in which the solid lines are generated by neural
network solutions and the purple dashed lines are generated by Fernández-Villaverde et al.
(2023). NN, FA, NN, DS, and NN, P refer to the neural network technique based on finite
agents, discrete state, and projection, respectively. FV refers to Fernández-Villaverde et al.
(2023)’s technique.
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Algorithm 2: Finding Transition Path by Neural Network: Krusell Smith case
Input : Neural network approximations to the consumption rule ĉ, and pricing

functions (r̂, ŵ), number of agents N , time step size ∆t, number of time
steps NT , number of simulations Nsim

Output: A transition path g = {gt : t = 0,∆t, . . . , NT∆t}

for n = 0, . . . , NT − 1 do
for k = 1, . . . , Nsim do

Sample ∆B0
t from normal distribution N(0,∆t), construct TFP shock path

by: zt+∆t = zt + η(z̄ − zt) + σ∆B0
t .

Sample N agents {si : i = 1, . . . , N} from distribution gt at time t = n∆t.
Given other agents’ state s−i, calculate the consumption ĉ(a, y, s−i, zt+∆t),
equilibrium capital return r̂(s−i, zt+∆t) and wage ŵ(s−i, zt+∆t). Then
construct A by finite difference scheme.

end
Take the average: Ā = 1

Nsim

∑Nsim

k=1 Ak
Update gt by implicit method: gt+∆t = (I − Ā>∆t)−1gt

end

5.4 Results With Fixed Aggregate Productivity

For fixed aggregate productivity, zt = z, our example model is the continuous time version
of the Aiyagari-Bewley-Huggett model discussed in Achdou et al. (2022). This model has a
precise finite difference solution and so acts as a more detailed “check” for the accuracy of our
solution technique. Table 4 plots the MSE between our steady state solution and the finite
difference solution. Figure 3 plots the steady state consumption policy rule, derivative of
the value function, probability density function (pdf), and cumulative distribution function
(cdf) for the solutions from the finite agent code, the discrete state space code, and finite
difference code. Evidently, the neural network solutions align very closely to the finite
difference solution.

Master equation loss MSE(NN, FD)

Finite Agent NN 3.135× 10−5 4.758× 10−5

Discrete State Space NN 9.303× 10−6 6.591× 10−5

Table 4: Neural Networks’ results for solving master equations. The master equation loss is
the mean squared error of residuals. MSE(NN,FD) is the mean squared difference of con-
sumption solved by neural network and finite difference. The training loss at each iteration
is available in Appendix D.
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Figure 3: Comparison between neural network and finite difference solutions for the Aiya-
gari model. The top left plot shows the consumption policy rule. The top right shows the
derivative of the value function, the bottom left shows the pdf, and the bottom right shows
the cdf. The superscript NN,FA refers to the finite agent neural network code, the super-
script NN,FS refers to the discrete state space neural network code, and the superscript
FD refers to the finite difference code.

5.5 Transition Dynamics for MIT Shocks

Finally, we consider the transition path following an unexpected shock to aggregate pro-
ductivity (a so-called “MIT” shock). Attempting to consider this makes little sense for the
discrete state space approximation and the projection method because both rely on types of
ergodic sampling and so have difficulty with attempting to consider unanticipated shocks.
However, we were able to train our finite agent approximation using a moment sampling
procedure that considered a large range of distributions and so it makes sense to consider
how successfully the neural network approximation can handle transition paths.

An important advantage of having a global solution, i.e., c∗ as a function of the dis-
tribution, is that we can solve for the transition path without a “shooting algorithm”, as
is commonly done in the finite difference literature. This is an advantage because shoot-
ing algorithms are often unstable, particularly for systems with a large number of prices
that require complicated guess for the price path. Instead, with a full solution to the master
equation, we can solve the Kolmogorov Forward Equation (KFE) directly as time-dependent
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consumption is a function of density g(a, n).

∂gt(a, n)
∂t

= − ∂

∂a
(s(a, n, gt)gt(a, n)) + λ(gt(a, ñ)− gt(a, n)) ≡ A>g

where A is transition matrix. We illustrate this for the finite agent approximation. The
iterative procedure for solving the KFE in this case is summarized in Algorithm 3 below.
We expand on the different approaches for calculating the transition path in Appendix B.2.

Algorithm 3: Finding Transition Path by Neural Network: Aiyagari case
Input : Neural network approximations for (ĉ, r̂, ŵ), number of agents N , time

step size ∆t, number of time steps NT , number of simulations Nsim
Output: A transition path g = {gt : t = 0,∆t, . . . , NT∆t}

for n = 0, . . . , NT − 1 do
for k = 1, . . . , Nsim do

Sample N agents {si : i = 1, . . . , N} from distribution gt at time t = n∆t.
Given other agents’ state s−i, calculate the consumption ĉ(a, n, s−i),
equilibrium capital return r̂(s−i) and wage ŵ(s−i). Then construct Ak by
finite difference scheme.

end
Take the average: Ā = 1

Nsim

∑Nsim

k=1 Ak.
Update gt by implicit method: gt+∆t = (I − Ā>∆t)−1gt.

end

We compare the neural network and finite difference transition paths in Figure 4 below.
We discuss how the finite difference solution is computed in Appendix B.2. In this numerical
experiment, we train our neural network at z = 0 and we start from an economy in its
steady state with productivity zt = −0.10 for t = 0. At t = 0+, an unexpected positive
productivity shock brings z from −0.10 to zt = 0 permanently. We solve distributional
dynamics by Algorithm 3, and use steady state at z = −0.10 as the initial condition. We
plot the percentage change of capital, capital return and wage evolution respectively in the
first row and the second row of Figure 4. The difference between neural net’s transition
paths and finite difference’s transition paths are less than 0.1%. The lower panels of Figure
4 compares neural network and finite difference probability density at time t = 15 and
t = 30.

5.6 Calibration

In this section, we discuss how to use our algorithm to calibrate models. As has been
discussed by a number of papers, a potential benefit of deep learning algorithms is that we
can include the parameters, ζ, as additional inputs into the neural network:

V (X̂, ζ) ≈ V̂ (X̂, ζ; θ)
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Figure 4: Comparison between neural network and finite impulse response for the Aiyagari
model. The top left plot is the TFP shock path, the top right panel is the aggregate relative
capital change, the middle left panel plots the relative capital return change, and the middle
right panel plots the relative wage change. The bottom left and bottom right are snapshots
of probability density at t = 15 and t = 30. NN, FA refers to the finite agent neural network
code, and the FD refers to the finite difference code. Subscript init is the initial value at
the steady state z = z(0).
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We can then train the neural network using sampling from both X̂ and ζ. In principle, this
means that we can train the model once and get a solution across a range of parameter
values. We can then use V̂ to calculate the moments for different parameters and calibrate
the model. This approach is feasible if the neural network can be trained without ergodic
sampling but difficult to implement if ergodic sampling is required.

We illustrate this technique for the finite agent approximation by calibrating the Krusell
and Smith (1998) model to match a stochastic steady state capital-to-labor ratio of 5.0.
We do this by including the borrowing constraint a as an input into the neural network,
training the model randomly sampling a from [−0, 1.5], and then using the trained model
to solve for a that generates a stochastic steady state capital-to-labor ratio of 5.0. We show
the results in Table 5.

K/L

Target Model a

5.0 5.0 1.082

Table 5: Neural Networks’ results for Calibration

5.7 Comparison of Techniques

Although the different distribution approximation approaches can all be effective, we found
they had different strengths and weaknesses in our experiments. We found the finite-agent
approximation to be very robust in a number of ways: the neural network can be trained
with a simple sampling procedure that does not require ergodic simulation (or any knowledge
of the model solution), the algorithm only required a moderate number of agents (approx-
imately 40), and we had success adding parameters as auxiliary states so the model could
be solved across the state and parameter space at the same time.

By contrast, we found the discrete-state approximation to be difficult to work with for
the Krusell and Smith (1998) model. We believe a lot of the issues come from having
to approximate the derivatives in the Kolmogorov Forward Equation on the discrete state
space. One challenge is that this requires a fine grid for agent wealth (approximately 200
grid points). A related challenge is that the training samples need to come from relatively
smooth densities and so ergodic sampling is very important. Ultimately, this made the
model slow to train. Follow up work in Payne et al. (2024) extends our approach to search
and matching models and finds that the discrete state approximation is very effective for
that class of models. This offers suggestive evidence that the discrete state approximation is
most helpful when the KFE does not contain complicated derivatives (or potentially when
it is trained by simulating a set of Forward-Backwards differential equations as in Huang
et al. (2018)).

Finally, the projection approach brings a different set of trade-offs. Both the finite
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agent and discrete state approximations feed relatively large state spaces into the neural
network and then let the neural network work out how to structure the approximate value
function. By contrast, the projection method requires more choices ex-ante. This allows us
to work with a much lower dimensional approximation (approximately 5 basis functions)
and to choose which statistics of the distribution we want to match most closely in our
approximation.

6 Lessons For Practitioners
Although the deep learning algorithm is straightforward to describe, we find that imple-
menting it successfully can be tricky. In this section, we collect some lessons that we believe
are helpful for using deep learning to solve macroeconomic models.

Lesson 1: Working out the correct sampling approach is very important. A key feature
of continuous time methods is that we must specify where in the state space to sample.
This is very different from discrete time approaches which typically simulate the economy
and so implicitly sample from the ergodic distribution. Like Gopalakrishna (2021), we find
that choosing where to sample is both an advantage (because we can focus sampling in
interesting, rarely visited regions of the state space with complicated curvature) but also a
difficulty (because it can be hard to know where to sample). Many of our initial problems
were resolved by adjusting how we were sampling the finite dimensional approximation to
the distribution. In particular, we found it is essential to have significant variation in dis-
tribution so that the neural network can learn where there is curvature in the problem.

Lesson 2: Neural networks have difficulty dealing with inequality constraints. The Achdou
et al. (2022) formulation of the Aiyagari (1994) model is written with a hard lower boundary
that at ≥ a, which leads to an inequality boundary condition at a and a mass point in the
distribution at a. This is convenient for the finite difference solution technique because the
inequality constraint does not impact the tractability of the upwind scheme. However, it
causes problems for the neural network approach because it is treated using a penalty term
in the loss function, but the inequality constraint is too “easy” to satisfy, in the sense that
the neural network will easily make the penalty term 0: many levels of the value function
satisfy the constraint. Placing a low weight on the lower boundary error leads to solutions
with the correct curvature but the wrong level. Placing a high weight on the lower boundary
error leads to solutions with the right level but inaccurate curvature. So, there seems to
only be a very small subset of weights that lead to accurate results for inequality bound-
ary conditions. Ultimately, we find that replacing the hard constraint by a soft constraint
and utility penalty makes the method much more robust while not changing drastically the
model.
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Lesson 3: Enforcing shape constraints is very important. We find that the neural network
is likely to converge to “cheat solutions” that approximately solve the differential equation
by setting derivatives to zero. There are number of ways to help with this, such as: (i)
including in the loss function some terms on the curvature of the value function to enforce
the correct shape (e.g. penalizing non-monotonicity or non-concavity), (ii) pre-training the
neural network to match an initial guess satisfying known properties of the value function so
that when the neural network is trained to minimize the PDE loss, it converges to a (local)
minimizer which has the same desired properties, (iii) sampling from a sufficiently large part
of the state space that the neural network realizes there is curvature in all dimensions, and
(iv) choose an architecture which satisfies the constraints or which at least makes it easier
for the neural network to satisfy these constraints. Overall, we did not observe that a single
approach was sufficient by itself, but using a combination of these ideas helped.

Lesson 4: Mean squared errors can be misleading. We found that even if mean squared
training errors are in the order of 10−2 or 10−3, the neural network can give policy rules
that are inaccurate. This suggests that overfitting can be a problem for neural network
solutions to PDEs and so choosing the right “cross validation” sample is important. It also
suggests that the threshold for convergence for neural network solutions to continuous time
models might need to be higher than for other techniques, such as finite difference methods.
The underlying question is related a posteriori error bounds, which would estimate how
close to the true solution the neural network is in terms of the value of the loss.

Lesson 5: Start with a simple model to tune hyperparameters. A benefit and cost with
using neural networks is that they are very flexible approximations. This means that a
difficult and time consuming part of training a neural network model is finding appropriate
hyperparameters. We find that it is helpful to start with a simple model for which we
know the solution (or for which we have a very good approximation, e.g. a version of
the model without aggregate shocks, that can be solved with a finite difference scheme),
and tune the hyperparameters to make sure that the neural network approximation closely
matches the finite difference solution. We can then introduce aggregate shocks starting
with a set of hyperparameters that are good at capturing many features of the distribution.
In other words, we suggest learning on a simple version of the problem, for which the
solution is already known and then learning on the more complicated problem, using similar
hyperparameters.

7 Conclusion
This paper proposed a new global solution algorithm for continuous time heterogeneous
agent economies with aggregate shocks. We demonstrated our algorithm by solving two
canonical models in the macroeconomics literature: the Aiyagari (1994) model and the
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Krusell and Smith (1998) model. Using our method on the first model, which can be solved
using classical techniques, allows us to find tune hyperparameters, which can then be used on
more complex models. One advantage of our method is that solving the second model with
aggregate shocks is not much more difficult than solving the first problem without aggregate
shocks. However, this is only the beginning of what is possible with this technique. Future
work can deploy this solution technique to solve high dimensional economic models with
non-linearities and aggregate shocks.
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A Details on Numerical Examples From Section 5 (On-
line Appendix)

A.1 Parameters

Parameter Symbol Value
Capital share α 1/3
Depreciation δ 0.1
Risk aversion γ 2.1
Discount rate ρ 0.05
Mean TFP Z 0.00
Reversion rate η 0.50
Volatility of TFP σ 0.01
Transition rate (1 to 2) λ1 0.4
Transition rate (2 to 1) λ2 0.4
Low labor productivity n1 0.3
High labor productivity n2 1 + λ2/λ1(1− n1)
Borrowing constraint a 10−6

Maximum of asset a 20.0
Penalty Function ψ(a) − 1

2κ(a− alb)2

Penalty parameters alb 1.0
Penalty parameters κ 3.0
Drift in O-U Process η 0.5
Volatility in O-U Process σ 0.01
Maximum TFP zmax 0.04
Minimum TFP zmin −0.04

Table 6: Parameters for Krusell-Smith Model from Section 5.3

A.2 Detail on the Master Equations

In this subsection of the Appendix, we describe the precise master equations that we use to
train the neural network for each approach. Let W (a, l, z, ϕ̂) := ∂aV (a, l, z, ϕ̂) denote the
derivative of the value function with respect to a.

Finite agent approximation: In this case, we replace the distribution by the positions of the
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agents:

ϕ̂ = {(ai, li)}i≤I

where I = 41 agents. The master equation operators can be written as:

(L̂hW )((ai, li), z, ϕ̂) = + (r(ϕ̂)− ρ)W ((ai, li), z, ϕ̂) + ψa(ai) + si∂aW ((ai, li), z, ϕ̂)

+ λ(yi)
(
W ((ai, l̃i), z, ϕ̂)−W ((ai, li), z, ϕ̂)

)
+ ∂ZW (ai, li, z, ϕ̂)η(z − z) + 1

2σ
2∂zzW (ai, li, z, ϕ̂)

(L̂gW )((ai, li), z, ϕ̂) = +
∑
j 6=i

sj((aj , lj), z, ϕ̂)∂ajW ((ai, li), z, ϕ̂)

+ λj(lj)
(
W ((ai, li), {(aj , l̃j), z, ϕ̂−j})−W ((ai, li), z, ϕ̂)

)
Discrete state space approximation: In this case, we replace the distribution by its values
at the points x1, . . . , xN of the grid. More specifically, we take N = 1000 points, and we con-
sider a discretization a1 < · · · < a500 of the a-axis. We then denote x1 = (a1, l1), . . . , x500 =
(a500, l1), x501 = (a1, l2), . . . , x1000 = (a500, l2) ∈ R2. We use a uniform grid and denote
∆a = a2 − a1. For simplicity of presentation, we will use the notations ϕ̂m,i = ϕ̂i×m and

sm,i(z) := s(am, li, ĉ∗(am, li, z, ϕ̂), r(ϕ̂), w(ϕ̂)).

Recall that the dynamics of the discrete distribution takes the generic form (3.4). In our
implementation, we use the finite difference scheme proposed by Achdou et al. (2022). The
KFE is replaced by the following finite difference equation:

dϕ̂m,i,t = µ̂ϕ̂,m,i(zt, ϕ̂t)dt, m = 1, . . . , N/2, i = 1, 2,

with

µ̂ϕ̂,m,i(z, ϕ̂) := − [Da(ϕ̂·,is·,i(z))]m − λ(li)ϕ̂m,i + λ(l3−i)ϕ̂m,3−i (A.1)

where l3−i = ľi = l2 if i = 1 and l1 if i = 2, and the first order derivative is approximated
using an upwind scheme:

∂aϕ(am, li)sm,i(z) ≈ [Da(ϕ̂·,is·,i(z))]m := ϕ̂m+1,i − ϕ̂m,i
∆a (sm,i(z))++ ϕ̂m,i − ϕ̂m−1,i

∆a (sm,i(z))−

with (sm,i(z))+ and (sm,i(z))− denoting respectively the positive part and the negative
part of sm,i(z). Viewing ϕ̂ as an N -dimensional vector and using the notation n = i ×m,
µ̂ϕ̂,m,i(z, ϕ̂) defined in (A.1) can be written in matrix form as:

µ̂ϕ̂,n(z, ϕ̂) = [Aϕ̂ϕ̂]n
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where Aϕ̂ is an N ×N tridiagonal matrix.
The operator L̂h is defined, similarly to the finite-agent approximation, by:

(L̂hW )(a, l, z, ϕ̂) = (r(ϕ̂)− ρ)W (a, l, z, ϕ̂) + ψa(a)

+ s(a, l, ĉ∗(a, l, z, ϕ̂), r(ϕ̂), w(ϕ̂))∂aW (a, l, z, ϕ̂)

+ λ(l)
(
W (a, l̃, z, ϕ̂)−W (a, l, z, ϕ̂)

)
+ ∂zW (a, l, z, ϕ̂)η(z − z) + 1

2σ
2∂zzW (a, l, z, ϕ̂).

The operator L̂g defined in (3.5) is, in this context, given by:

(L̂gW )(a, l, z, ϕ̂) =
∑
i=1,2

N/2∑
m=1

µ̂ϕ̂,m,i(z, ϕ̂) ∂ϕ̂m,iW (a, l, z, ϕ̂)

=
N∑
n=1

µ̂ϕ̂,n(z, ϕ̂) ∂ϕ̂nW (a, l, z, ϕ̂),

where ∂ϕ̂m,i
W = ∂ϕ̂n

W denotes the partial derivative of W with respect to the coordinate
(i×m) = n of the N -dimensional vector ϕ̂.

Projection approximation: In this case, we replace the distribution by projection coefficients
ϕ̂ ∈ R5 onto a basis b0, b1, ..., b5 of 6 basis functions. We choose the basis functions as
follows:

(i) We start out by solving the steady-state model with finite difference methods on
a grid of 101 equally spaced grid points in the a-dimension. This finite-difference
solution yields a 202 × 202-matrix that serves as a finite-dimensional approximation
to the steady-state KFE operator LKF,ss. In a first step, we construct the basis of
eigenfunctions described in the main text and discussed in more detail in Appendix C.
Practically, we approximate the eigenfunctions by eigenvectors of the finite difference
KFE matrix. We pick a total of 7 eigenvectors, which results in a preliminary basis
b̃00, b̃

0
1, . . . , b̃

0
6.

(ii) In a second step, we impose the restriction that the marginal distributions in the
y-dimension are always in line with the ergodic distribution of the yit process. This
restriction assures that effective labor is constant over time. It also reduces the dimen-
sion of the basis by 1. After imposing the restriction, we are thus left with a reduced
basis b̃0, b̃1, . . . , b̃5, where b̃0 = b̃00 and b̃1, . . . , b̃5 are each linear combinations of the
original eigenfunctions b̃01, . . . , b̃06.

(iii) In a third step, we make a change of variables that rotates the basis b̃0, b̃1, . . . , b̃5 but
leaves the set of densities that can be approximated unaffected. Specifically, we first
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find the representing vector in span{b̃1, ..., b̃5} for the linear functional

K(g) :=
∫
ag(a, y1)da+

∫
ag(a, y2)da,

call it b1 (existence is ensured by the Riesz representation theorem). We then select
four more vectors out of b̃1, ..., b̃5 such that together with b1 we obtain again a basis
of the space and then project those four vectors onto the orthogonal complement of
b1. Call the resulting vectors b2, ..., b5. Also define b0 := b̃0. For our projection
of the distribution, we work with the resulting basis b0, ..., b5. This rotation helps
us in sampling because the coefficient ϕ̂1 on b1 fully controls the aggregate capital
stock implied by a given distribution approximation vector ϕ̂,11 so that it is relatively
straightforward to implement a variant of moment sampling.

For the law of motion of the distribution approximation ϕ̂, we adapt the generic approach
outlined in the main text as follows for the KS model and the specific basis chosen here.
We proceed in two steps:

First, we determine the law of motion of the coefficient ϕ̂1 that governs the evolution
of aggregate capital Kt, so that we match the law of motion of Kt exactly. In the generic
approach outlined in the main text, this amounts to picking the test function φ(a, y) = a.
Because we can match this component perfectly, we do not need to minimize regression
residuals but instead directly compute the forward evolution

µK(z, ϕ̂) = dKt

dt

∣∣∣∣
zt=z,gt=Ĝ(ϕ̂)

=

Y (ϕ̂, z)−
∑
i=1,2

∫
ĉ∗(a, li)Ĝ(ϕ̂)(a, li)da− δK(Ĝ(ϕ̂))

 dt,

where the integrals
∫
ĉ∗(a, li)Ĝ(ϕ̂)(a, li)da are approximated using quadrature over the 101-

point grid on which the basis functions are known. We put particular emphasis on the
evolution of Kt because this statistic of the distribution is all that matters for prices.12

This procedure translates into a law of motion for ϕ̂1 as follows:

µϕ̂,1(z, ϕ̂) = µK(z, ϕ̂)
K(b1)

For the remaining components ϕ̂2, ..., ϕ̂5 of the ϕ̂-vector we take a more agnostic approach
that mirrors closely the discrete state approximation. Specifically, we first compute the finite
difference approximation of the KFE as in the discrete state space approximation on the
101-point grid on which the basis functions are known. Call this µDSg (z, ĝ), where ĝ is
the density on the 101-point grid (which corresponds to the distribution approximation

11By construction, the basis vectors b2, ..., b5 are orthogonal to b1. Because b1 is the representing vector
for the K-functional, K(b2) = · · · = K(b5) = 0, so these components do not contribute to the mean of the
distribution.

12However, other aspects of the distribution still matter for the evolution of Kt itself as can be readily
observed from the presence of the integrals over the consumption functions.
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for the discrete state method).13 We then determine the drifts µϕ̂,2(z, ϕ̂), ..., µϕ̂,5(z, ϕ̂) as
the coefficients of a linear regression (orthogonal projection) of µDSg (z, Ĝ(ϕ̂)) on the basis
vectors b2, ..., b5.

The regression just described can be mapped into the generic approach from the main
text by choosing the test functions

φm =

δ(am,l1), m ≤ 100

δ(am−100,l2), m ≥ 101
, m = 0, 1, . . . , 201,

where δ(a,y) denotes the Dirac delta distribution at (a, y).
With these choices, the master equation operators can be written as:

(L̂hW )(a, l, z, ϕ̂) = (r(ϕ̂)− ρ)W (a, l, z, ϕ̂) + ψa(a)

+ s(a, l, ĉ∗(a, l, z, ϕ̂), r(ϕ̂), w(ϕ̂))∂aW (a, l, z, ϕ̂)

+ λ(l)
(
W (a, l̃, z, ϕ̂)−W (a, l, z, ϕ̂)

)
+ ∂zW (a, l, z, ϕ̂)η(z − z) + 1

2σ
2∂zzW (a, l, z, ϕ̂)

(L̂gW )(a, l, z, ϕ̂) =
5∑

n=1
µϕ̂,n(z, ϕ̂) ∂ϕ̂n

W (a, l, z, ϕ̂)

A.3 Implementation Details

A.3.1 Network Structure

Finite Agent Agent Approximation: We use a fully connected feed-forward neural network
with 5 layers and 64 neurons per layer. We use a tanh activation function between layers and
a soft-plus activation at the output level. We initialize the neural network so that W (a, ·)
has an exponential shape with negative exponent. This is done through a pre-training phase.

Discrete State Space Approximation: The neural network for approximating W = ∂aV

combines three steps to map the input data X̂ := {x, z, ϕ̂} into an output Ŵ (X̂; θW ). We
describe these steps separately:

In a first step, an “embedding” network transforms the component ϕ̂ into a 10-dimensional
output ϕ̂′ by feeding it through a fully connected feed-forward network as described in Sec-
tion 4.1. This embedding network has 2 layers and 128 neurons per layer. We use a tanh
activation function in the hidden layers and the identity function in the output layer. Denote
by θeW the collection of parameters for this network.

13Specifically, this means that if, in the context of the description of the discrete state space approximation,
ϕ̂ = ĝ, then µDS

g (z, ĝ) := µϕ̂(z, ϕ̂). Note that there, ϕ̂ describes the values of the density on the 101-point
grid, so this definition makes sense. However, in the present context ϕ̂ has a different meaning (coefficients
in the projection), so that we use the notation µDS

g (z, ĝ) to avoid any confusion.
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In a second step, we apply a recurrent network as proposed by Sirignano and Spiliopoulos
(2018) to the modified input data X̂ ′ := {x, z, ϕ̂′}, which results from X̂ by replacing the
distribution approximation ϕ̂ with the output ϕ̂′ if the embedding network. Specifically, the
structure of the Sirignano and Spiliopoulos (2018) network is as follows:

h(0) = φ(0)(W (0)X̂ ′ + b(0)) . . .Hidden layer 0

f (1) = φ(1)
(
W f,(1)h(0) + Uf,(1)X̂ ′ + bf,(1)

)
. . .Hidden layer 1

g(1) = φ(1)
(
W g,(1)h(0) + Ug,(1)X̂ ′ + bg,(1)

)
. . .Hidden layer 1

r(1) = φ(1)
(
W r,(1)h(0) + Ur,(1)X̂ ′ + br,(1)

)
. . .Hidden layer 1

s(1) = φ(1)
(
W s,(1)(r(1) � s(0)) + Us,(1)X̂ ′ + bs,(1)

)
. . .Hidden layer 1

h(1) = (1− g(1))� s(1) + f (1) · h(0) . . .Hidden layer 1
...

f (H) = φ(H)
(
W f,(H)h(H−1) + Uf,(H)X̂ ′ + bf,(H)

)
. . .Hidden layer H

g(H) = φ(H)
(
W g,(H)h(H−1) + Ug,(H)X̂ ′ + bg,(H)

)
. . .Hidden layer H

r(H) = φ(H)
(
W r,(H)h(H−1) + Ur,(H)X̂ ′ + br,(H)

)
. . .Hidden layer H

s(H) = φ(H)
(
W s,(H)(r(H) � s(H−1)) + Us,(H)X̂ ′ + bs,(H)

)
. . .Hidden layer H

h(H) = (1− g(H))� s(H) + f (H) · h(H−1) . . .Hidden layer H

o = W (H+1)h(H) + b(H+1) . . .Output layer

Ŷ = φ(H+1)(o) . . .Output

Here, {h(i)}0≤i≤H denote the H+1 hidden layers and {f (i), g(i), r(i), s(i)}1≤i≤H are auxiliary
variables required to compute the neuron value in each layer. W (0), {W f,(i),W g,(i),W r,(i),W s,(i)}1≤i≤H ,
and {Uf,(i), Ug,(i), Ur,(i), Us,(i)}1≤i≤H are the weight matrices of the network, whereas b(0)

and {bf,(i), bg,(i), br,(i), bs,(i)}1≤i≤H are the biases. The operator � denotes the element-wise
product (Hadamard product) of vectors. We choose H = 3 and 100 neurons per layer,
which means that the dimension of each of the vectors h(i), f (i), g(i), r(i), and s(i) is 100.
We use a tanh activation function in the hidden layers and an elu activation function in
the output layer to ensure positivity of the output. The trainable parameters θrW of this
network consists of the collection of all weights and biases of the network.

In a final third step, we transform the output Ŷ from the recurrent network into the
approximate value for W as follows:

Ŵ = Ŷ (a0 + a)−η̃.

Here a0 and η̃ are non-trainable parameters. The additional factor (a0 + a)−η̃ is motivated
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by the hyperbolic shape of the marginal value function. Its inclusion helps improving the
overall accuracy of the approximation for a given neural network size. We make the selection
a0 = 10 and η̃ = 0.5.

The trainable parameters of the network Ŵ consists of the collection θW = {θeW , θrW }
of all trainable parameters from the first and second step. We initialize all bias parameters
to zero and all weight parameters randomly according to a uniform Xavier initialization
(Glorot and Bengio, 2010).

In addition to the neural network for W , we also introduce an auxiliary network for the
consumption function, ĉ(X̂; θc). The structure of ĉ precisely mirrors that of the network for
Ŵ (including the number of layers and neurons in each sub-network), except that we omit
the third step. For initialization of the parameters θc, we follow the same approach as for θW .

Projection Approximation: We use the same network structure and parameter initialization
as for the discrete state space approximation. The only difference is that we choose a
smaller embedding network, both for approximating W and for approximating c: instead of
128 neurons per layer, the embedding network for this approximation has only 64 neurons
per layer.

A.3.2 Sampling

Finite Agent Approximation: We sample points of the form {(ai, ni), {aj , nj}j∈(I−1)} on the
interior of the state space. For the idiosyncratic variable, ai, we sample using an active sam-
pling technique similar to those developed by Gopalakrishna (2021) and Lu et al. (2021a).
We divide the state space for a ∈ [0, 20] into 16 intervals with equal width. For each iteration
of the algorithm, we calculate the average loss in each region. We then add extra points to
the regions with the largest loss. We use the active sampling approach because it allows us
to actively learn where the algorithm is having trouble minimizing the loss function. The
interval [a, a] is evenly partitioned into 24 subintervals. We do active sampling after 2,000 of
epochs to make it efficient.14 We calculate the residual error in each subinterval, find where
it is the largest and add 24, 23, 22 points to it, its nearest, and second nearest neighboring
subinvervals. For sampling the population of agents, {aj , nj}j∈(I−1), we generate a random
interest rate, then generate a random distribution of agents and scale their individual wealth
so the equilibrium interest rate is the randomly drawn interest rate. The interest rate r is
drawn from a uniform distribution on [rlb, rrb], with rlb = −0.05, rrb = 0.05. Thanks to the
fact that we deal with the boundary condition through a penalty, we do not need to sample
points on the boundary, nor to evaluate the error Eb. This is quite robust to different model
parameters. We sample aggregate variable z uniformly from interval [zmin, zmax].15

14The loss has a steeper drop after we start active learning in the 2000th epoch, as shown in Figure ??.
15Theoretically, it is possible that zt becomes lower than zmin or greater than zmax. In practice, letting
|zmin/max| = 4σ is good enough to approximate the economic relevant region. We cannot replace the step
of having r ∈ [rlb, rrb] by having z ∈ [zmin, zmax] to let the distribution move around because z’s scaling
effect is weaker. In fact z’s impact on interest rate is ∆r ≈ (r+ δK)∆z, which can hardly let the population
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Discrete State Space Approximation: We first sample points of the form (a, ϕ̂, z) randomly
and then construct the full sample for points of the form (a, l, ϕ̂, z) by using each originally
sampled point twice, once in combination with l = l1 and once in combination with l = l2.
We sample the three dimensions of (a, ϕ̂, z) independently as follows:

• We sample a from a uniform distribution over the domain [0, 20] (without active
sampling).

• We sample z from a uniform distribution over the domain [zmin, zmax] as for the finite
agent method.

• For the sampling of ϕ̂, we use a mixture of two sampling schemes, (i) a variant of mixed
steady state sampling and (ii) ergodic sampling based on the current approximation
for W . For sampling scheme (i), we use a “degenerate” mixture based on just a single
steady-state solution (for z = 0). Denote by ĝss the vector of steady-state density
values on the discrete state grid. We take as sample points ϕ̂(ai, li) = ωiĝ

ss(ai,li)∑Nx

j=1
ωj ĝss(aj ,lj)

,

where the ωi are i.i.d. with uniform distribution over an interval of the form [1 −
dg, 1 + dg], with dg ∈ (0, 1). We gradually increase the proportion of the sample that
is according to (ii) from 0% to 90% during training.

Projection Approximation We follow precisely the same sampling approach as in the dis-
crete state space approximation, except for the distribution dimension ϕ̂. We therefore
only discuss the latter here. We sample the first component of the distribution, ϕ̂1, sepa-
rately as this component exclusively controls the aggregate level of the capital stock (com-
pare Appendix A.2). We sample aggregate capital K from a uniform distribution over
[0.9Kss, 1.1Kss], where Kss is the steady-state level of capital in the model without com-
mon noise and z = 0, and we adjust ϕ̂1 to match the sampled capital stock values. We
sample the remaining four components ϕ̂2, ..., ϕ̂5 by combining uniform sampling from a hy-
percube centered around zero and ergodic sampling. We gradually increase the proportion
of ergodic sampling from 0% to 80% during training.

A.3.3 Loss Function

For all three approximation method we impose penalties to impose the shape constraints
∂aW < 0 and ∂zW < 0 by choosing the shape error as follows:

Es(θn, Sn) := 1
|Sn|

∑
(a,l,z,ϕ̂)∈Sn

(
|max{∂aŴ (a, l, z, ϕ̂; θ), 0}|2 + |max{∂zŴ (a, l, z, ϕ̂; θ), 0}|2

)

We combine this the equation residual error Ee(θn, Sn) for the total error E(θn, Sn) as
described in Algorithm 1. We choose as weights κe = 100, κs = 1 for the finite agent

distribution move around. See more discussions in Section 6.
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method and κe = κs = 1 for the other two methods. Ultimately, we have found that
the relative weights of the loss components only matter in early training when the shape
constraints are occasionally violated. In late training, shape constraints are typically always
satisfied, so that the weights κe, κs are irrelevant for training.

————————

B Additional Details on Aiyagari Model (Online Ap-
pendix)

B.1 Penalty Function Approximation

In this section, we compare the finite difference solutions with the hard and soft boundary
constraints. The comparisons are summarized in Figure 5.
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Figure 5: Comparison between penalty function approach and hard constraint in finite
different exercise. ψ(a) = − 1

2κ(a− alb)2, alb = 1.0, κ = 3.0.

B.2 Comparison of Techniques for Calculating Transition Dynam-
ics without Aggregate Shock

After we obtained the neural network approximation of the value function in the master
equation, V (ai, ni, s−i), we are able to consider the transition path in two ways. The first
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way is to consider an evolving finite agent economy, the initial asset and employment status
are sampled from the initial distribution: g0(a, n). This method gives the transition path
of return on capital/labor directly. To solve the Kolmogorov Forward Equation, the key is
to figure out µ(a, n) = ra+wn− c, which can be approximated by the consumption policy.
The algorithm can be summarized as follows in a high level.

Algorithm 4: Finding Transition Path by Neural Network

1. Sample N agents from the initial condition g0(a, n).

2. Calculate the consumption, then find the transition path for every asset position.

3. After we’ve obtained ct, at, rt, solve gt(a, n) by finite difference of the forward
equation

The second way is to update the distribution by Kolmogorov Forward Equation and
resample agents from the updated distribution accordingly. Recall the forward equation in
this economy:

∂gt(a, n)
∂t

= −∂(µ(a, n)g(a, n))
∂a

− λng(a, n) + λňg(a, ň).

In the this finite agents economy, the dynamic of equilibrium return on capital does not
require another “guess-verify” loop, as in Achdou et al. (2022). The following algorithm
modified to solve the dynamics of Aiyagari Economy.

Algorithm 5: Finding Transition Path by Finite Difference

1. Guess the path of equilibrium interest rate ro(t), then solve HJB, with terminal
condition: v(a, n, T ) = v̄(a, n)

2. Solve the policy function ct(a, n).

3. Solve the forward equation, with initial condition g0(a, n).

4. Calculate the capital held by the whole economy:
∫∞
a

∑
n∈{0,1} agt(a, n) = Kt, then

calculate the implied interest rate by rn(t) = ∂KF (Kt, L)− δ, for every t ∈ [0, T ].

5. Update the path to be λro(t) + (1− λ)rn(t), repeat 1-4 until ||ro − rn||∞ < ε.

Lessons. When using iterative method to find steady state/distributional dynamics in
the forward equation, we have:

g = (I −A(g)dt)−1g,

which means we essentially have a high dimensional fixed-point problem. As we are using
simulation to find A, we know A may be very kinky because of the sampling error, and the
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Figure 6: Fixed point problem in finding steady state and distributional dynamics. The
fixed point is solved by the cross between (I − Adt)−1 and 45◦ line. The kinky black line
on the left panel is the simulated operator (I − Ādt)−1, and the red dashed line is the
smoothed approximation of (I − Ādt)−1. The concave black solid line on the right panel
is the theoretical (I − Ādt)−1. gss and gss,solved are the crossing points between the black
solid line and 45◦ line, the red dashed line and 45◦ line, respectively.

solution is to have Nsim very large to smooth (I−Ādt)−1. Otherwise, the distribution g can
be trapped before it reaches the steady state, as shown in Figure 6. Initial distribution with
total capital Kinit < Kss,new will end up with a oscillating, but a steady state with slightly
lower aggregate capital. Similarly, initial distribution with total capital Kinit > Kss,newwill
end up with a oscillating, but a steady state with a slightly higher aggregate capital.

C Additional Details on the Eigenfunction Basis for the
Projection Technique

We would like to choose a basis such that just a few basis functions are enough to provide a
good approximation. The key idea to achieve this is to track the slow-moving or persistent
dimensions of gt while neglecting those dimensions that mean-revert fast. To understand
why, recall that the only reason the distribution appears in the state space is because it
helps agents forecast future prices qt. Components that mean-revert fast carry only little
information about future prices beyond a short time horizon. Neglecting them induces a
comparably small error into the agent’s forecasts.

The persistent dimensions of the distribution are related to certain eigenfunctions of the
differential operator characterizing the KFE (2.6). We can rewrite this equation as

dgt(x) = (LKFt gt)(x)dt
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where, for generic distribution f and point x,

LKFt f(x) = − ∂x[µx(c∗t (x, zt, gt), x, zt, qt)f(x)] + 1
2∂xx[(σx(zt))2f(x)]

+ λ((1− γ′(x, zt, qt))f(x− γ(x, zt, qt))− f(x)).

Notice that LKFt is a linear differential operator that generally depends on time and is
stochastic due to the implicit dependence on zt and gt. Constructing a (fixed) basis based
on the eigenfunctions of Lgt is therefore not directly possible because the set of eigenfunctions
would itself be time-dependent and stochastic.

Instead, our construction is based on a related time-invariant operator LKF,ss. We
define LKF,ss in analogy to LKFt but for a perturbed model with common noise set to zero,
σz ≡ 0, and under the assumption that the aggregate states zt = z̄ and gt = gss have
reached a steady-state. There is a heuristic element in our basis construction that lies in
the presumption that broadly the same dimensions of the distribution are relevant for the
dynamics described by LKF,ss and the true dynamics described by LKFt . While generally
plausible, if this requirement is not satisfied, then our proposed basis may not track the
persistent dimensions of the true KFE dynamics well.

Let us consider the eigenfunctions {bi : i ≥ 0} of LKF,ss with corresponding eigenvalues
denoted by {λi ∈ R : i ≥ 0}. They satisfy:

LKF,ssbi = λibi, i ≥ 0.

Suppose gss is the unique stationary distribution and the dynamics prescribed by the KFE
are locally stable around gss. Then the eigenvalue λ0 = 0 exists and its associated eigenfunc-
tion is, up to scaling, b0 = gss. All remaining eigenvalues satisfy <λi < 0, so that these com-
ponents of the distribution mean-revert to zero over time. Furthermore, a smaller <λi is as-
sociated with a faster speed of mean-reversion. To be precise, suppose gt = gss+

∑∞
i=1 ϕi,tbi

is the time-t distribution expressed as a linear combination of all the eigenfunctions and sup-
pose the time evolution of gt is described by the differential operator LKF,ss. Then,

gss +
∞∑
i=1

ϕ̇i,tbi = dgt
dt

= LKF,ssgt = LKF,ssgss +
∞∑
i=1

ϕi,tLKF,ssbi = gss +
∞∑
i=1

ϕi,tλibi

Since the bi form a basis, the previous equation implies a system of ordinary differential
equations for the coefficient functions ϕi,t, i ≥ 1. The solution is given by ϕi,t = ϕi,0e

λit,
and therefore

gt = gss +
∞∑
i=1

ϕi,0e
λitbi, t ≥ 0.

Because <λi < 0 for i ≥ 1, all terms in the series on the right decay to zero as t → ∞.
Components corresponding to eigenvalues λi with very negative real parts decay at a faster
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Figure 7: Training Loss vs Interation Plots (Finite Agent Method). Shaded areas are 80%
confidence interval.

rate. As such, deviations from the stationary distribution gss have a greater persistence if
they are in the direction of eigenfunctions corresponding to eigenvalues that are (negative
but) close to 0. We therefore expect that a finite basis of eigenfunctions will provide a good
approximation of the infinite sum if there are only a few “significant” eigenvalues that are
close to 0.

The previous considerations motivate our basis choice in the main text. To be precise,
that basis choice means the following: we order with descending real parts, λ0 = 0 >

<λ1 > <λ2 > . . . , and choose b0, b1, ..., bN as the eigenfunctions corresponding to the first
N + 1 eigenvalues in this ordering as our basis. We remark here also that this choice of
b0, b1, ..., bN satisfies the required properties stated in equation (3.6) of Section 3.3. This is
clear for n = 0. For n > 0, it follows form the fact that the operator LKF,ss describes a
mass-preserving evolution, which is only consistent with asymptotic decay over time if the
integral is zero.

D Training Losses (Online Appendix)
Figure 7 show the distribution of training paths across 20 runs of the algorithm.
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