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Abstract

How do asset returns interact with wealth inequality? Empirical evidence
shows that portfolio choices and financial constraints lead to unequal risk exposure
across households and financial intermediaries. To understand the dynamic general
equilibrium implications, we build a macroeconomic model with heterogeneous
households, a financial sector, asset market participation constraints, and endogenous
asset price volatility. We develop a new deep learning methodology for characterizing
global solutions to this class of macro-finance models. We show that wealth
inequality, financial sector recovery, and asset price dynamics depends on which
households are able to purchase assets during crisis. This means the government
faces a trade-off between tighter leverage constraints and a more equal recovery.
In our calibrated model, asset returns and participation constraints account for a
large fraction of the change in wealth inequality over the past half-century.
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1 Introduction

Many researchers have documented that US wealth inequality has increased during the
post-war period (e.g. Piketty (2014), Saez and Zucman (2016)). This has motivated
extensive debate about the macroeconomic drivers of wealth inequality. A much
discussed channel is that asset portfolios vary across the wealth distribution and so earn
different returns. This suggests that asset price dynamics and government interventions
in financial markets have an important impact on inequality. However, macroeconomists
have had difficulty studying these effects because they have struggled to characterize
global solutions to heterogeneous agent models with aggregate risk and complicated
portfolio restrictions. We develop a deep learning algorithm that overcomes these
technical difficulties and allows researchers to bring insights from the asset pricing
literature into the debate over inequality. We use a calibrated general equilibrium
macro-finance model to understand how successfully portfolio heterogeneity can explain
inequality dynamics and to what extent the government needs to balance financial
sector stabilization against inequality.

We study a heterogeneous agent business cycle model with financial intermediaries,
participation constraints, aggregate risk, and endogenous asset price volatility. The
economy contains short-term risk-free assets and risky capital stock that generates
output. It is populated by a large collection of price-taking households who face
idiosyncratic death shocks and a penalty for holding capital that is relaxed as agents
get wealthier. This leads to a non-trivial household distribution of wealth and portfolio
choices. The economy also contains a financial expert that can freely hold capital but
cannot raise equity. The financial frictions on the households and financial expert
generate endogenous volatility in the capital price process that depends upon the
distribution wealth in the economy.

We start by investigating the different mechanisms connecting inequality and asset
pricing in our model. The evolution of wealth inequality can be decomposed into the
following forces: (i) wealthier agents have more access to capital markets, which allows
them to build wealth more quickly (sometimes referred to as the “scaling” force in
the literature) but also increases their exposure to aggregate risk, (ii) wealthier agents
have a higher propensity to consume out of wealth, and (iii) agent exits increase the
wealth share of poorer agents because agents have an imperfect bequest motive. The
strength of the first “scaling” force depends on the health of the financial sector. When
the financial sector takes losses in a crisis, it becomes less willing to hold capital and
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so the excess return on capital increases and wealthy households participating in the
capital market growth their wealth much quickly than poorer agents. This generates the
feature of the data that wealthier households have a more positive exposure to the risk
premium during recessions. The magnitude of the crisis excess returns depends upon
the severity of the participation constraint and the inequality in the household sector.
If household wealth is equally distributed and participation costs are high, then the
household sector cannot act as a “backstop” in the capital market during crises and so
the scaling force in the model is very strong. If the household wealth is very unequally
distributed, then the wealthiest agents participate in the asset market and act as the
“back-stop” so the scaling force is weak. In this sense, it is the interaction between
inequality and the endogenous general equilibrium price dynamics that determine the
extent to which wealthy households can build wealth more quickly.

In Section 5, we calibrate our model to match the average risk free rate, leverage
ratio, and portfolio distribution. We perform two non-targeted comparisons to the data
to sense-check our model performance. First, the model approximately matches the
average equity returns, and the equity risk premium observed in the US data, despite
these moments not being explicitly targeted in the calibration. Second, we compare
to estimates of heterogeneous business cycle exposure. Using the data from 1976 to
2023 we run local projections that regress the change in wealth shares on the risk
premium conditional and unconditional on being in a recession. We find that wealthier
households and financial intermediaries have a more positive exposure to the equity risk
premium. We also show that this positive exposure is higher during recessions. The
projection analysis reveals that relative to the average household, a 10% increase in
the equity risk premium increases the wealth of affluent agents by 1.0%, and decreases
the wealth of poor agents by 0.3%. Conditioned on recessions, this gap widens to 1.3%
for the wealthy and 1.5% for the poor households, respectively. We interpret this as
evidence that poorer agents have less access to higher return assets in general and that
the constraints restricting participation bind more during recessions. Local projections
using simulated data from our model lead to similar patterns, although poorer agents
in our model are more negatively exposed to risk premia than in the data.

Our calibrated model captures a large fraction of the change in wealth shares since
1980. To see this, we simulate the model starting from a household wealth distribution
resembling the data and show that it generates wealth distribution evolution consistent
with the evolution of empirical distribution. The top 1% wealth share increases from
approximately 25% to approximately 35% in the both the data and the model. It is
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worthy of note that a minimal departure from the literature in the form of participation
constraints on households generates a lot of action and matches the empirical moments,
indicating the success of our calibrated model.

Finally, we use our model to study the impact of financial macro-prudential policy
on inequality. We show that imposing a tighter leverage constraint on the financial
sector has two effects: a) it slows down the recovery of financial sector relative to
the benchmark with no leverage constraint, and b) increases the risk premium in
equilibrium since households have to hold the risky asset and they demand a participation
premium due to their constraints. Since wealthier households are more able afford to
pay the participation cost than the poorer households, they buy more of the risky assets,
earning the high risk premium and widening the inequality gap. Thus, the regulator
faces a trade-off between stabilization policy in the form of leverage constraint and
wealth inequality.

From a technical point of view, we solve our model by using deep learning tools
to train an Economic Model Informed Neural Network (EMINN). General equilibrium
for our economy can be characterized by a collection of blocks: (1) a high, but finite
dimensional PDE capturing agent optimization, (2) a law of motion for the distribution
of wealth shares and other aggregate state variables, and (3) a set of conditions that
ensure the price processes are consistent with equilibrium. We develop a new solution
approach that can handle complexity in all three blocks. We use neural networks
to approximate derivatives of the value function and the price volatility of long-term
assets. We then use stochastic gradient descent to train the neural network to minimize
the error in the “master” equations that characterize equilibrium for the system. Our
approach connects and expands the algorithms developed in Gu, Laurière, Merkel and
Payne (2023) and Gopalakrishna (2021). We exploit our continuous time formulation
to construct an algorithm that imposes portfolio choice and market clearing explicitly
in the master equations. This allows us to circumvent the problems that have occurred
in other deep learning papers trying to solve models with portfolio choice. We test our
solution approach by solving a collection of canonical macro-finance models that have
finite difference solutions.

We believe our algorithm is the first method than can satisfactorily find a global
solution to models with non-trivial optimization, distribution evolution, and equilibrium
blocks, without having to resort to low-dimensional approximations of the wealth
distribution. Other macro-finance models make assumptions to ensure that at least
one of these blocks has a closed form solution. To understand this, it is instructive
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to compare to some canonical models. First, for a representative agent model, the
distribution block 2 is not applicable because there is no agent heterogeneity and
equilibrium block 3 is less complicated because the goods market condition becomes
much simpler. Second, for the continuous time version of Krusell and Smith (1998)
discussed in Gu et al. (2023), we have a distribution of agents so distribution block 2
is non-trivial. However, this model only has short-term assets, which leads to closed
form expressions for prices in terms of the distribution. So, the equilibrium block 3 is
trivial to satisfy. Third, for models such as Basak and Cuoco (1998) and Brunnermeier
and Sannikov (2014) discussed in Gopalakrishna (2021), the HJBE can be solved in
closed form. This means that agent optimization block 1 can be solved analytically
and substituted into the rest of the equations.

Literature Review: We are part of an active literature studying how asset pricing
can impact inequality (recent examples include Gomez et al. (2016), Cioffi (2021),
Gomez and Gouin-Bonenfant (2024), Fagereng, Gomez, Gouin-Bonenfant, Holm, Moll
and Natvik (2022), Basak and Chabakauri (2023), Fernández-Villaverde and Levintal
(2024), Irie (2024) amongst many others). Our contribution is to introduce endogenous
capital market participation and endogenous price volatility into a heterogeneous agent
macroeconomic model.

Our solution approach is part of a growing computational economics literature using
deep learning techniques to solve economic models and overcome the limitations of
the traditional solution techniques (e.g. Azinovic, Gaegauf and Scheidegger (2022),
Han, Yang and E (2021), Maliar, Maliar and Winant (2021), Kahou, Fernández-
Villaverde, Perla and Sood (2021), Bretscher, Fernández-Villaverde and Scheidegger
(2022), Fernández-Villaverde, Marbet, Nuño and Rachedi (2023), Han, Jentzen and
E (2018), Huang (2022), Duarte (2018), Gopalakrishna (2021), Fernandez-Villaverde,
Nuno, Sorg-Langhans and Vogler (2020), Sauzet (2021), Gu et al. (2023)). Very few
deep learning literature have solved models with long-term asset pricing and complicated
portfolio choice, as in our model. Fernández-Villaverde, Hurtado and Nuno (2023)
and Huang (2023) solve an extension of Krusell and Smith (1998) with portfolio
choice between short-term assets with different risks. Azinovic and Žemlička (2023)
solves a general equilibrium model with long-term assets in discrete time by encoding
equilibrium conditions and financial constraints into neural network layers. Azinovic,
Cole and Kubler (2023) employ low-dimensional approximation of the wealth distribution,
following Kubler and Scheidegger (2018), and analyze long-term asset prices in the
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presence of aggregate and idiosyncratic risk. The difficulty involved with pricing long-
term assets with heterogeneous agents is that the equilibrium allocation and individual
choices must be determined together, as also pointed out by Guvenen (2009). We
demonstrate that in continuous time, on the wealth share space, equilibrium objects
can be determined through a unified framework simultaneously. The main contribution
of this paper to the deep learning literature is to show how we can globally solve general
macro-finance problems without having to resort to low-dimensional approximations of
the wealth distribution.

The rest of this paper is structured as follows. Section 2 outlines our economic
model. Section 3 introduces our numerical algorithm. Section 4 explores the different
mechanisms connecting inequality and asset pricing. Section 5 presents results from
our empirical analysis and from our calibrated model.

2 Economic Model

In this section, we outline the economic model we use throughout the paper. We
study a continuous time, heterogeneous agent real business cycle macroeconomy where
households face asset market participant constraints and the financial sector has equity
raising frictions.

2.1 Environment

Setting: The model is in continuous time with infinite horizon. There is a perishable
consumption good and a durable capital stock. The economy has the following assets:
short-term risk free bonds and capital stock.

Production: The production technology in the economy creates consumption goods
according to Yt = eztKt where Kt is the capital used at time t and zt is aggregate
productivity. Aggregate productivity evolves according to:

dzt = ζ(z̄ − zt)dt+ σzdWt,

where Wt denotes an aggregate Brownian motion process. We let Ft denote the
filtration generated by Wt. Any agent can use goods to create capital stock, kt, but all

6



face adjustment costs so that their capital evolves according to:

dkt = (ϕ(ιt)kt − δkt)dt

where Φ(ι)k := (ι − ϕ(ιt))k represents the resources used from investment rate ιt and
δ is a depreciation rate.

Agents: The economy is populated by a large, finite collection of infinitely lived price
taking agents, indexed by i ∈ I = {i : 0 ≤ i ≤ I}.1 We interpret agents 1 ≤ i ≤ I − 1
as “households” (h) and agent i = I as a financial “expert” (e). Each household i

has discount rate ρ and gets flow utility u(ci,t) = c1−γ
i,t /(1 − γ). Households receive

idiosyncratic death shocks at rate λh. We let ρh := ρ + λh. Following a death, a new
agent enters with a fraction 1 − β of the dying agent’s wealth while the remaining β is
distributed evenly across the population. The economy also contains a financial expert
with the same utility as the household and discount rate ρe > ρh.

Assets, markets, and financial frictions: Each period, there are competitive markets
for goods and capital trading. We use goods as the numeraire. We let qt denote the
price of capital and rt denote the interest rate on bonds. We guess and verify that the
capital price process satisfies:

dqt = µq,tqtdt+ σq,tqtdWi,t

where µq,t, σq,t are the geometric drift and volatility of the qt respectively. Asset markets
are incomplete so households cannot insure their idiosyncratic labor shocks.

Financial frictions: Households face a capital market participation constraint, which
we model as a “soft” constraint by imposing the utility penalty function2:

Ψh(ki,t, ai,t, ηi,t) = ψh,tΞi,tai,t, where ψh,t = ψh(ki,t, ai,t, ηi,t) = ψ̄σ2

2ηi,t

(
ki,t
ai,t

)2

where ψ̄ is the severity of the constraint, ai,t is household i’s wealth, ki,t is household i’s
1We interpret the economy as an approximation to a competitive equilibrium with a continuum of

price-taking agents. In Gu et al. (2023) we compare this to other ways of approximating such equilibria.
2We model this as a utility penalty since the cost is small as a function of aggregate output in the

economy.
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capital holdings, ηi,t is agent i’s wealth share in the economy, and Ξi,t is the equilibrium
SDF in the economy for an agent with wealth ai,t. We can observe that participation
penalty is softened as agents hold more wealth. The expert cannot raise equity but
does not face a capital market participation constraint so Ψe(·) = 0.

2.2 Equilibrium

Agent problems: Given their belief about the price processes, (r̂, q̂), each agent i

chooses consumption ci,t and bond holding bi,t to solve problem (2.1) below:

max
ci,bi

{
E0

[∫ ∞

0
e−ρit (u(ci,t) − Ψi(ai,t − bi,t, ai,t, ηi,t)) dt

]}
s.t. dai,t = r̂i,tdt+ (ai,t − bi,t)dR̂k,t − ci,tdt+ τtdt

(2.1)

where τ = βλAt is the transfer from dying agent, Ψi is the participation constraint
faced by agent i and dR̂k,t is the agent’s belief about the return on holding capital:

dR̂k,t := z − ιtkt
q̂tkt

+ d(q̂tkt)
q̂tkt

=
(

z

q̂tkt
− ιt
q̂t

+ (ϕ(ιt) − δ) + µ̂q,t

)
dt+ σ̂q,tdWt

=: r̂k,tdt+ σ̂q,tdWt

Expanding out the price processes allows the wealth evolution to be written as:

dai,t = µa,tdt+ σa,tdWt, where µa,i,t := bi,tr̂t + (ai,t − bi,t)r̂k,t − ci,t

σa,i,t := (ai,t − bi,t)σ̂q,t
(2.2)

Distribution: The uninsurable idiosyncratic shocks and idiosyncratic differences in
agent portfolio constraints potentially generate a non-degenerate distribution of agent
wealth positions across the economy. We let gt = {ai,t : i ∈ I} denote the positions of
agents across the economy at time t for a given filtration Ft, where Ft is generated by
aggregate shock process {Wt}t≥0. With some abuse of terminology, we refer to gt as
the distribution across the economy.

(Sequential) Equilibrium Definition: Given an initial distribution g0, an equilibrium
for this economy consists a collection of F-adapted stochastic processes {cit, bit, gt, rt,
qt, Kt, yt : t ≥ 0, i ∈ I} such that:
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1. Agent decision processes solve problems (2.1), given their belief about the price
process (r̂, q̂);

2. At each time t, equilibrium prices (rt, qt) solve the market clearing conditions: (i)
goods market

∑
i ci,t +

∑
i Φ(ιi,t)ki,t = y, (ii) bond market

∑
i bi,t = 0, and (iii)

capital market
∑
i(ai,t − bi,t) = qtKt;

3. Agent beliefs about the price process are consistent with the optimal behaviour
of all agents in the sense that (r̂, q̂) = (r, q).

2.3 Recursive Characterization of Equilibrium

In this section, we characterize the equilibrium recursively. We work through the
problem in detail in Appendix A and summarize the key results here. The “natural”
state variables for the equilibrium are:

(z,K, g = {ai}1≤i≤I).

However, it turns out that the recursive characterization in agent wealth levels leads
to a complicated fixed point problem that is hard for the Neural Network to train (we
discuss in detail in Section 3.3 after we introduce the algorithm.). Instead, it will be
convenient to characterize the equilibrium in terms of wealth shares. Let A :=

∑
j≥1 aj

denote total wealth in the economy. Let ηi := ai/A denote the share of wealth held by
agent i. Then, the aggregate state of the economy can be written in terms of wealth
shares (with some abuse of the g notation) as

(z,K, g = {ηj}1≤i≤I).

State variables and beliefs: We assume there exists a solution to the equilibrium that is
recursive in the aggregate state variables which we denote by (·). This means that the
states that appear in the household decision problem are (ai, ·). In this case, beliefs
about the price process can be characterized by beliefs about how the distribution and
aggregate capital stock evolves since prices are all implicitly functions of the aggregate
state variables. Formally, an agent’s beliefs about the evolution of the distribution are
characterized by their beliefs about the drift and covariance of other agents wealth
and the drift of capital stock, {µ̂aj (·), σ̂aj (·), µ̂K(·) : j ̸= i}, which imply beliefs about
prices through the pricing functions (r(·), q(·)). We let Vi(ai, ·) denote household i’s
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value function. For notational convenience, we drop the explicit dependence on (·)
where possible.

We define the marginal value of wealth and the partial derivatives of the marginal
value of wealth (the so called “stochastic discount factors”) by:

ξi := ∂Vi
∂ai

, ∂aξi := ∂ξi
∂ai

= ∂2Vi
∂a2

i

, ∂ajξi := ∂ξi
∂aj

= ∂2Vi
∂aiaj

Once equilibrium is imposed, all the endogenous objects in the economy must be
functions of (z,K, {ηj}j≥1). Thus, we can use Ito’s Lemma to express the drift and
volatility of ξi in terms of derivatives of ξi with respect to (z,K, {ηj}j≥1) in equilibrium:

ξiµξi
= ∂ξi
∂z

µz + ∂ξi
∂K

µK +
∑
j

∂ξi
∂ηj

ηjµηj ,t +
∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz

+ 1
2
∂2ξi
∂z2 σ

2
z + 1

2
∑
j,j′

∂2ξ2
i

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t (2.3)

ξiσξi
= ∂ξi
∂z

σz +
∑
j

∂ξi
∂ηj

ηjσηj ,t. (2.4)

It is helpful to characterize the equilibrium in terms of three blocks that impose
belief consistency and market clearing conditions, where possible.

1. Agent optimization block: Applying the Envelope Theorem to the HJBE (equation
(A.1) in the Appendix), imposing belief consistency, and using Ito’s Lemma to collect
terms leads to the continuous time Euler equation (the so called “master equation” for
the economy) for ξi. That is, given prices (r, rk, q, µq, σq), agent optimization implies
that (ξi, ci, bi, ιi) satisfy:

0 = − ρi + r + µξi,t (2.5)

u′(ci) = ξi

r − rk = σξi
σq + ∂ψi

∂bi

∣∣∣
ai=ηiq

(2.6)

ιi = (ϕ′)−1
(
q−1

)
where µξi

satisfies (2.3) and σξi
satisfies (2.4).

2. State evolution block: Given prices (rt, rk, q, µq, σq) and agent optimization (ξ, c, b, ι),
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we can use Ito’s Lemma to get the law of motion for each wealth share ηj,t = aj,t/(qtKt):

µηj ,t = rk,t − µq,t − µK,t + bj,t
ηj,tqtKt

(rt − rk,t) − (u′)−1(ξj,t)
ηj,tqtKt

+ bj,t
ηj,tqtKt

σ2
q,t + βλ(1 − ηj,t)

ηj,t
(2.7)

σηj ,t = − bj,t
ηj,tqtKt

σq,t (2.8)

The evolution of Kt satisfies:

dKt = (ϕ(ιt)Kt − δKt)dt.

3. Equilibrium block: The market clearing conditions now become:

∑
i

ci + Φ(ι)K = y
∑
i

bi = 0
∑
i

(ηiA− bi) = K

where the aggregate household wealth satisfies A :=
∑
j≥1 aj = qK and so the capital

market clearing condition simply becomes
∑
i ηi = 1. The risk free rate can only

be implicitly expressed in terms of the state variables through its dependence on the
stochastic processes for ξ and q (using the agent first order conditions):

r = rk + σξi
σq + ∂ψi

∂bi

The price of capital is even more difficult to handle because capital is a long-lived asset
for which the price can only be implicitly expressed in terms of the state variables using
Itô’s Lemma:

qµq,t =
∑
j

∂q

∂ηj
ηjµηj ,t + ∂q

∂z
µz,t + ∂q

∂K
µK,t +

∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz

+ 1
2
∑
j,j′

∂2q

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t + 1

2
∂2q

∂z2σ
2
z

qσq,t =
∑
j

∂q

∂ηj
ηjσηj ,t + ∂q

∂z
σz,t.

These expressions for µq,t and σq,t are what makes the law of motion for capital
“consistent” with the process that we posited in the environment and so are often
referred to as the price consistency differential equations.
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2.3.1 Comparison to Other Models

Why is this system of equations difficult to solve in our model? Because, unlike in most
models, all three blocks are non-trivial. To our knowledge, no other paper is able to
satisfactorily solve this system globally without imposing assumptions to make one of
the blocks trivial. To understand why this is the case, it is instructive to compare the
model to other macro-finance models.

(i). For a representative agent model, block 2 is not applicable because there is no
distribution and block 3 is less complicated because the goods market condition
simply becomes c+ (ι− ϕ(ι))K = y, which can be substituted into equations in
block 1. In this case, the model can be simplified to a differential equation for
q. For heterogeneous agent models, following Krusell and Smith (1998), other
papers approximate the distribution by a low dimensional collection of moments
and do not need to work the agent distribution.

(ii). For the continuous time version of Krusell and Smith (1998) discussed in Gu et
al. (2023), we have a distribution of agents so block 2 is non-trivial. However, this
model has no long-term assets and closed form expressions for all prices in term
of the distribution. So, block 3 is can be trivially satisfied and we can combine
all equilibrium conditions into one master equation.

(iii). For models such as Basak and Cuoco (1998) and Brunnermeier and Sannikov
(2014) discussed in Gopalakrishna (2021), the HJBE can be solved in closed
form. This means that block 1 can be solved analytically and substituted into
the block 3.

3 Algorithm

In this section, we outline our algorithm for solving the model. A “direct” application
of deep learning would be to parameterize the equilibrium objects and then train the
neural networks to minimize a loss function that combines condensed set of the general
equilibrium equations described in subsubsection A.2. Although this approach should
work in principle, many researchers have found it very difficult to implement in practice.
Instead, we simplify the equations, choose a parsimonious parametrization and break
the problem up into “linear” blocks.
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3.1 Neural network parametrization and loss function

Let X := (z,K, (ηi)i≤I) ∈ X denote the state vector in the economy and let X denote
the state space. We use neural networks to approximate sufficiently many variables
to allow us to calculate the remaining variables using matrix algebra. For our general
model, this requires approximating: the equilibrium consumption-to-wealth ratio policy
for the first agent in the economy with each type of financial constraint, {ωh(X)}h∈H,
and the price volatility, σq(X).We denote the approximations by:

ω̂h : X → R, (X,Θωh
) 7→ ω̂h(X; Θωh

), ∀h ∈ H

σ̂q : X → R, (X,Θq) 7→ σ̂q(X; Θq)

where {Θωh
}h∈H, Θq are the parameters in the neural network approximations of ω̂h

and σ̂qrespectively.
We can recover the approximate consumption policy function for each agent i with

constraint h from ω̂h because policies for all agents with a particular financial constraint
are symmetric. That is, let n(h) denote the position of the first agent economy in the
economy with constraint h. Then ω̂i(X) for any i with constraint h can be recovered
by swapping the positions of the states for n(h) and i:

ω̂i(X) = ω̂H(i)
(
z,K, (. . . , (ηn(h)) = (ηi),

. . . , (ηi) = (ηn(h)), . . .)
)
. (3.1)

At state X, the error (or “loss”) in the Neural network approximations is given by
the following equations for h ∈ H:

Lωj (X) = (r − ρ)ξ̂i + ∂ξ̂i
∂z

µz + ∂ξ̂i
∂K

(ϕ((ϕ′)−1(q−1))Kt − δKt)

+
∑
j

∂ξ̂i
∂ηj

ηjµηj ,t +
∑
j

∂2ξ̂i
∂z∂ηj

ηjσηj ,tσz + 1
2
∂2ξ̂i
∂z2 σ

2
z

+ 1
2
∑
j,j′

∂2ξ̂2
i

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t (3.2)

Lσ(X) = − qσ̂q +
∑
j

∂q

∂ηj
ηjσηj + ∂q

∂z
σz (3.3)

where ξ̂j = ξ̂(ω̂j(X)) for all j ∈ J , ψ̂j = ψ̂j(X) for all j ∈ J , σ̂q = σ̂q(X), and the
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other variables are evaluated by solving the relevant equations in section B.

Discussion: which neural network objects need to be approximated. We
approximate variables to ensure that the equations are linear given the neural network
approximated variables. This means that we always need to approximate ωj (or ξj)
because the Euler equation is non-linear. If there are no financial constraints, ψj = 0
for all j ∈ J , then we do not need to make any additional approximations because the
risk allocation equation can be solved using matrix inversion.

3.2 Algorithm

We outline the algorithm in Algorithm 1 below. Given the current guesses of the neural
networks, we solve for equilibrium using the matrix algebra. The exact set of condensed
equations that we solve are provided Appendix B. We then update our guesses for the
neural network approximations.

3.3 Imposing Market Clearing in the Sampling

The major difficulty faced by the deep learning macroeconomics literature is that it
is necessary to impose market clearing in the sampling. This is partly because trying
to impose market clearing in the loss function generates instability. It is also because
for asset pricing problems, in particular, sampling schemes that don’t impose market
clearing often lead the neural network learn a trivial mapping “q = q” due to the
summation of individual wealth equating to q. To overcome these problems, we restrict
the sample space to enforce market clearing.

If we sample in the a space, then we end up needing to restrict a to a subspace that
depends upon equilibrium prices. To make this concrete, consider the goods market
clearing condition, the capital market clearing condition, and the borrowing constraint:

∑
i

c(ai) +
∑
i

Φ(ιi,t)ki,t = ezK,
∑
i

ai = qK, ai ≥ ā

If we sample in a space, then we need to draw a values in a way that respects these
conditions. This restricts a to an I−1 dimensional hyperplane A(z,K, q) that depends
upon z, K, and the equilibrium q.

Restricting a to the equilibrium hyperplane causes a number of problems when we
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Algorithm 1 Pseudo Code
1: Initialize neural network objects {ω̂h}h≤H , and σ̂q with parameters {Θωh

}h≤H , and
{Θq} respectively.

2: Initialize optimizer.
3: while Loss > tolerance do
4: Sample N new training points:

(
Xn =

(
zn,Kn, (ηi)ni≤N−1

))N
n=1

.
5: Calculate equilibrium at each training point Xn:

a. Compute (ω̂ni )i≤I using equation (3.1) and the current approximation
{ω̂h}h≤H evaluated at Xn.

b. Compute qn and (ξni )i≤I using (ω̂ni )i≤I .

c. Solve for σσσnηηη and sn the current approximations for {ω̂h}h≤H , {∂bψ̂h}h≤H ,
and σ̂q (and their automatic derivatives).

d. Solve for portfolio choice θn.

e. Compute µη, µq, r.

5: Construct loss as:

L̂(X) =
∑
h

1
N

∑
n

|L̂ωh
(Xn)| + 1

N

∑
n

|L̂σ(Xn)|

where L̂ωh
and L̂σ are defined by (3.2)and (3.3) with ωh and σq replaced by their

neural network approximation.
6: Update {Θωh

}1≤i≤Hand {Θq} using ADAM optimizer.
7: end while
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don’t have a closed form expression for q and so need neural network approximations
for both V̂ and q̂.3 First, it is hard to control how frequently the sampled agents hit the
borrowing constraint. Second, numerical instability arises because the V̂ has another
neural network, q̂, as an input. This second problem is particularly acute for deep
learning based algorithms because there is no easy way to retain the computational
graph for q when calculating auto-derivatives for V . To understand this, recall that
the loss function depends upon V̂ (X; ΘV ) and q̂(X; Θq):

Loss(X) = F(X, V̂ (X; ΘV ), q̂(X; Θq))

This means that, in principle, the parameter update step in the stochastic gradient
descent algorithm should look like the following:

θV,n+1 = θV,n − αV,n
∂Loss

∂θV
,

θq,n+1 = θq,n − αq,n
∂Loss

∂θq
,

where αV,n and αq,n denote the rate of updating. However, when we impose equilibrium
sampling and so need to express V̂ as an implicit function of q̂, then we need to detach
q̂ in the θV update step and detach V̂ in the θq update step. So, in practice, the
algorithm looks like:

θV,n+1 = θV,n − αV,n
∂Loss

∂V̂

∂V̂

∂θV
,

θq,n+1 = θq,n − αq,n
∂Loss

∂q̂

∂q̂

∂θq
,

This “diverted” gradient based updating is very likely to get stuck at local minima,
particularly when there is high curvature in the problem. An additional problem is
that computing the evolution of the distribution requires the asset returns rq, r, µq, σq
but at the same time µq, σq are pinned down by the the consistency conditions, which
in turn depend upon the distribution evolution. This creates a fixed point problem
that does not have a simple closed form solution for µq, σq in most heterogeneous agent
economic models and so suggests that we need to introduce auxiliary neural networks
for µq, σq. Resolving these issues requires a staggered updating approach similar to

3For example, in Gu et al. (2023) we had a closed form expression for the prices and so we did not
face these difficulties.
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that proposed by Guvenen (2009).
Working in the wealth share space rather than the wealth space resolves these

issues. This is because, in the wealth share characterization, the capital market clearing
condition is automatically satisfied because of the accounting relation:

∑
i ηi = 1. This,

in turn, means that we are able impose market clearing in the sampling without needing
to allow the neural network approximation V̂ to take q̂ as an input.

3.4 Three Testable Models

We “test” our approach by using our algorithm to characterize the solution to three
macro-finance models that can be solved using conventional methods: a complete
markets model, Basak and Cuoco (1998), and Brunnermeier and Sannikov (2014).
Appendix C studies the comparison in detail. Here we summarize the key results. For
all models, we use simple feed-forward neural networks and an ADAM optimizer. The
details of the neural network parameters for each model are shown in Table 1.

Model Num of Layers Num of Neurons Learning Rate
“As-if” Complete Model 4 64 0.001
Limited Participation Model 5 64 0.001
BruSan Model 5 32 0.001

Table 1: Neural network parameters for the three testible models

Table 2 summarizes the mean squared error between the conventional solution and
the neural network solution. Evidently, the neural network and conventional methods
converge to very similar characterizations of equilibrium. We compares plots from the
models visually in Appendix C.

Method Error
Complete markets 1.0 × 10−5

Basak and Cuoco (1998) 4.9 × 10−4

Brunnermeier and Sannikov (2014) 7.0 × 10−5

Table 2: Summary of the algorithm performance and computational speed. Error calculates
the difference between solution by neural network and finite difference. All errors are in absolute
value (L1).
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3.5 Convergence For Our Full Quantitative Model

We solve the quantitative model by training the the deep neural networks
(
{ω̂h}Ih=1, σ̂q

)
.

Each neural network is fully-connected feed-forward type, and has 4 hidden layers and
32 neurons in each layer. We train using an ADAM optimizer with a learning rate of
0.0005 for 1400 iterations. Figure 1 presents the L-1 loss from the quantitative model
over iterations. The loss decreases over time although not monotonically due to the
stochastic nature of learning process. The HJB loss is higher than the consistency loss
due since the HJB equations involve Euler equations which are complicated since they
embed the market clearing conditions. After 10,000 iterations, the total L-1 loss is
0.018. The corresponding L-2 loss is 1.4 × 10−4.4

Figure 1: The L-1 loss from the quantitative model over iterations. The neural network
architecture is 4 hidden layers with 32 neurons in each layer trained using an ADAM optimizer.

4 Understanding Inequality and Asset Price Dynamics

An important feature of the model is the ability to characterize the general equilibrium
relationship between participation constraints, inequality, and asset price dynamics. In
this section, we explore these connections.

In our model, the difference between the drift of the wealth share of any two
4Figure 1 only shows for 300 epochs since we ignore epochs whenever the loss is larger than the

running mimimum.
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households i and j is given by:

µηj ,t − µηi,t = (θj,t − θi,t)(rk,t − rt) − (θj,t − θi,t)σ2
q,t

+ βλ

(
1
ηj,t

− 1
ηi,t

)
− (ωj − ωi) (4.1)

where θi,t := ki,t/ai,t is the fraction of wealth household i allocates to capital and the
portfolio choice must satisfy the FOC (with the function form for ψ substituted in):

σξ,i(θi) − σ

σq

ψ̄

ηi,t
θi = rk − rf

σq

The first term in (4.1) captures how participation constraints and risk aversion
impact the excess return that different agents can earn. When ηj,t > ηi,t is higher, then
agent j holds more wealth in capital and so gains wealth share compared to the poorer
agents who are unwilling to pay the cost to participate in the capital market. This has
sometimes been referred to as the “scaling” effect in the literature—wealthier agents
have access to better investment opportunities and so gain wealth more quickly. The
second term in (4.1) captures the impact of risk exposure on the average wealth drift.
Agents holding more capital are also more exposed to aggregate risk in the economy.
This is additional impact of scaling up into risky investment opportunities that is not
present in macroeconomic inequality models without aggregate risk. The third term
in (4.1) captures the impact of the death rate in the economy. This is the main force
that stabilizes the wealth distribution in economy. Other model have attributed this
many possible features (e.g. new entrants with better skills, idiosyncratic risk, . . . ).
We have little to say about it in our model and so simply allocate it to a death rate.
The final term in (4.1) captures how a lower marginal propensity to consume out of
wealth, ωj < ωi, leads to greater wealth accumulation.

How does the financial sector impact these dynamics? The expert does not have a
capital market participation constraint and so

σξ,e(θe) = rk − rf
σq

Imposing this in equation (4.1) gives the alternative expression:

µηj ,t − µηi,t = (θj,t − θi,t)σξ,e(θe)σq,t − (θj,t − θi,t)σ2
q,t − (ωj − ωi) (4.2)
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So, the portfolio choice of the expert and resulting capital price volatility end up
dictating to what extent capital market participation constraints impact inequality.

We use our model to characterize how these different forces play out. We start by
studying the approximate solution to the log-utility version of the model, which has
some analytical tractability. We then consider the more general CRRA preferences.

4.1 Log Utility and Fixed Consumption-to-Wealth Ratios

We start by considering the following log-case of the environment, which is analytically
tractable. We impose that all agents have log utility u(c) = log(c), and set β = 0 for
transfers. In Appendix E, we show that in this environment the consumption-to-wealth
ratios are given by:

ce,t
ae,t

= ρe,
ci,t
ai,t

= ρi + O(σ2)

and so, for analytical tractability, we work with the approximation that the consumption
wealth ratio constant for all agents. Under this approximation, the portfolio weights
on capital are:

θi,t = rq,t − rf,t

σ2
q,t + ψ̄σ2/ηi,t

, i ∈ {1, . . . , I − 1}, θe,t = rq,t − rf,t
σ2
q,t

.

This means that σξ,e = −θe,tσq,t and so the relative drift in wealth shares equation
(4.2) is simply given by:

µηj ,t − µηi,t = (θj,t − θi,t)(θe,t − 1)σ2
q,t

We show in Appendix E that the experts are levered in equilibrium so θe ≥ 1 and so
the experts widen the wealth share gaps between agents by amplifying the risk premium.

How does asset pricing impact household inequality? We start by investigating how
the severity of the participation constraint, ψ̄ and expert decision making impact asset
pricing and ultimately inequality dynamics.

Theorem 1 characterizes the equilibrium in the limiting cases as ψ̄ → 0 and ψ̄ → ∞.
The first case looks similar to Brunnermeier and Sannikov (2014) in the sense that
households can frictionlessly purchase capital from the experts and so as act as the
“back-stop” during financial crises. The second case looks similar to Basak and Cuoco
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(1998) in the sense that households can never purchase capital and so the expert sector
has to be its own “back-stop” during the crisis. In both cases, the household sector
aggregates because all households make the same portfolio choice.

Theorem 1. Given the wealth distribution {ηi}, i ∈ {1, ..., N}, we have that:

(i) In the limit as ψ̄ → 0, all households have the same portfolio weight on capital
θi = (rk,t − rf,t)/σ2

q .

(ii) In the limit as ψ̄ → ∞, all households hold no capital θi = 0.

In both limits, inequality is unchanging, µηj ,t − µηi,t = 0 for all i, j < I, and only the
aggregate wealth share of the household sector,

∑I−1
i=1 ηi,t matters for asset pricing.

Proof. See Appendix E.

A strength of our solution approach is that we can characterize the equilibrium
for 0 < ψ̄ < ∞, where household have heterogeneous portfolio decisions. In Figure
2, we plot the numerical solution for three intermediate participation constraints ψ̄ ∈
{0.2, 1.0, 2.0}. Unsurprising, we see that a higher participation cost means that households
hold less capital and experts hold more capital, even when expert wealth drops low.
This means that the risk premium in the economy must be higher so that experts
are compensated for the additional risk they bear. In particular, we see that higher
participation constraints lead to much higher risk premia during crises.

Figure 3 plots the resulting relationship between the drift in inequality and the
expert wealth share for different levels of the participation constraint. Evidently,
the impact of a higher participation constraint is non-monotonic. When the expert
wealth share is small, having a higher participation constraint leads to faster growth in
household inequality because the risk premium is high but only the wealthy agents can
access the capital market. When the expert wealth share is large, a higher participation
constraint can lead to slower growth in household inequality because even the wealthy
households are unwilling to compete with expert to hold capital.

How does inequality impact asset prices? We now consider the feedback from household
inequality back into asset prices. Aggregate capital demand is given by:

I−1∑
i=1

θi,tηi,tAt + θe,tηe,tAt =
(
I−1∑
i=1

η2
i,t

ψ̄σ2 + σ2
q,tηi

+ ηI,t
σ2
q,t

)
(rk,t − rf,t)qtKt
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Figure 2: Equilibrium functions for different participation constraints for geometric
TFP process. The blue plot has ψ̄ = 0.2. The orange plot has ψ̄ = 1.0. The green
plot has ψ̄ = 2.0. Wealth distribution within the household sector is set to be equal.
ρe = 0.04, ρh = 0.03, µ = 0.02, σ = 0.05 (the same below for all figures in this section).
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Figure 3: Equilibrium inequality drift for different participation constraints. The blue
plot has ψ̄ = 0.2. The orange plot has ψ̄ = 1.0. The green plot has ψ̄ = 2.0. Wealth
distribution within the household sector is set to be equal.
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For ψ̄ ∈ (0,∞), the agent portfolio choices {θi,t}i≤I are heterogeneous across the
population and so the wealth distribution impacts the aggregate capital price. Holding
σq,t constant, we can see that a more unequal distribution leads to a lower excess return
on capital because most of the household wealth in held by an agent facing a small
participation constraint. Theorem 2 shows that as ηe,t → 0, the σq,t becomes constant
and intuition above is precisely true. Figure 4 plots the equilibrium functions when
the distribution is equal (the blue line) and when one household owns all the wealth
(the orange line). This also shows numerically that high household inequality pushes
up the risk premium and pushes down the risk free rate.

Theorem 2. As ηe → 0, the σq → σ and greater household inequality leads to a lower
excess return on capital.

Proof. Available in the appendix E.
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Figure 4: Equilibrium functions in a two households economy with log utility and
varying inequality. The orange line is when one household has all the wealth. The blue
line is when each household takes half of the wealth in household sector. Participation
constraint is ψ̄ = 2.0.
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Figure 5: Equilibrium functions in a two households economy with CRRA utility (γ =
2) and varying inequality. The orange line is when one household has all the wealth.
The blue line is when each household takes half of the wealth in household sector.
Participation constraint is ψ̄ = 2.0.

4.2 CRRA With Varying Consumption-to-Wealth Ratios

Finally, we can consider the CRRA case where the consumption-to-wealth ratio is
no longer approximately constant. Figure 5 shows the analogous figure for CRRA
preferences. Evidently, the participation constraint changes the curvature in the consumption-
to-wealth ratio of the households.

5 Quantitative Model

In this section, we show that a calibrated version of our model can match cross-section
local projections and long term trends in inequality. We then use our calibrated version
of our model to study how macroprudential policy impacts inequality.

5.1 Evidence on Asset Pricing and Wealth Inequality

Before moving to our calibrated model, we estimate how the US equity risk premium
impacts the wealth distribution in recessions and expansions. We show that there is
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wealthier households and financial intermediaries have a more positive exposure to the
equity risk premium, particularly in recessions. We interpret this as evidence that
poorer agents are less able to take advantage of business cycle frequency asset return
risk. We match this data in our quantitative model.

5.1.1 Data Sources

We use data from the following sources. Stock market returns are from Welch and Goyal
(2008). Dividend and risk free rate data are from the Shiller Online Database. Wealth
distribution data is from the updated version of Saez and Zucman (2016). Financial
institution data is constructed from the CRSP Database. For all empirical analysis, we
use times series from 1976 until 2023 at a monthly frequency.

We estimate the equity risk premium since it is not directly observed. We proxy
the risk premium by the fitted value of the following regression:

K∑
k=1

Rt→t+k − rf,t = β0 + β1dpt + ϵt

where Rt→t+k is the cumulative k-period future returns, rf is the risk free rate, and
dpt is the dividend yield.5 For the baseline specification, we use k = 1 but the results
do not materially change for other values.

5.1.2 Household Risk Premium Exposure

To measure the impact of risk premium on the household wealth distribution, we
perform a Jordà (2005) style local projections and run the following regression

log
(
Wp,t+h
Wp,t

)
= αp,h + βp,hrp

K
t + ϵp,t+h

for horizon h = 1 to 30 months, where wp,t+h is the real wage growth of households
in p − th percentile at horizon h. We repeat this regression for 4 different wealth
percentiles p ∈ {0.01, 0.1, 40.0, 50.0} denoting the top 0.01%, top 0.1%, middle 40%,
and bottom 50% of the household wealth distribution, respectively. The top panel of
Figure 6 displays the coefficient βp,h for different percentile levels. First, risk premium
tends to affect wealth positively over the longer horizon. Second, this effect is larger

5For robustness, we estimate the risk premium using the Fama-French three factor model instead
of dividend yield and get similar results.
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among the top wealth percentiles compared to the bottom percentiles. The results do
not change if we add lagged risk premium as controls to account for the possibility that
wealth share moves because risk premium is correlated.

Next, we study the response of wealth distribution to risk premium conditional on
the economy being in a recessionary state. Recessionary periods correspond to the
NBER recessionary dates. We run the following regression:

log
(
Wp,t+h
Wp,t

)
= αp,h + β̃p,hrp

K
t × 1Rec + ϵp,t+h

where 1Rec is a dummy variable taking a value 1 during NBER recessionary periods,
and 0 otherwise. The coefficient β̃p,h measures the response of wealth distribution to
conditional risk premium. The bottom panel of Figure 6 presents the coefficients, where
the unconditional patterns also hold conditional on recessionary periods. We plot the
ratio of the conditional exposure in a recession to the unconditional exposure in the
bottom panel of Figure 6. Evidently, the conditional effect of risk premium on wealth
is larger for top wealth percentiles.

Figure 6: The figure plots the impulse response of wealth distribution to risk premium (βp,h)
obtained from the regression log (Wp,t+h/Wp,t) = αp,h +βp,hrp

K
t + ϵp,t+h. The red lines are the

conditional impulse response of wealth distribution to risk premium (βp,h) obtained from the
regression log (Wp,t+hWp,t) = αp,h + β̃p,hrp

K
t × 1Rec + ϵp,t+h. The data for wealth percentiles

come from Saez and Zucman (2016), and risk premium is estimated using a factor model.
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Figure 7: The left panel plots plots the impulse response of wealth distribution to risk
premium (βBHC,,h) obtained from the regression log (WBHC,t+h/WBHC,t) = αBHC,h +
βBHC,hrp

K
t + ϵBHC,,t+h. The right panel plots (βBHC,h) obtained from the regression

log (WBHC,t+h/WBHC,t) = αBHC,h + β̃BHC,hrp
K
t × 1Rec + ϵBHC,t+h. The right panel plots

the ratio of conditional exposure to unconditional exposure β̃p,h/βp,h for top three wealth
distribution percentiles p ∈ {0.01, 0.1, 10.0}.

5.1.3 Financial Institution Risk Premium Exposure

We repeat the same empirical exercise for the financial institutions in the US. The
wealth of financial institutions is computed as the sum of market capitalization of
financial companies in the CRSP universe. Figure 7 confirms that the response of
financial institution wealth to risk premium are similar to the top wealth percentile
households, both unconditionally and conditional on recessionary periods.

5.2 Calibration

We calibrate the model with a strategy that combines targeting model moments and
data moments. Remaining parameters are taken from the literature. Table 3 displays
the calibrated parameters. The discount rate is set to 5% based on the literature
(Krishnamurthy and Li (2020), Gertler and Kiyotaki (2010) etc.). Expert’s discount
rate is 7% that includes a death rate of 2% in line with Gârleanu and Panageas (2015).
The risk aversion parameter is calibrated to match expert sector leverage ratio of 6.6.
This number is closer to the value of 6 used in Krishnamurthy and Li (2020). The
volatility parameter is set to 0.2.6 The portfolio constraint parameter is calibrated to
generate a 32% portfolio share from the middle income households.

6While this is higher than the historical volatility of 4% of real GDP growth (Bohn’s historical
data), we set it to a higher value since the only shock in the model is a Brownian TFP shock with
which we aim to match the entire evolution of wealth distribution in the past century. A lower value
of σ does not materially change the asset pricing moments since participation constraints remain to be
the major driver.
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Parameter Symbol Value Target
Risk aversion γ 3.0 Expert leverage
Households’ Discount rate ρh 0.05 Literature
Experts’ Discount rate ρe 0.07 Literature
Reversion rate β 0.5 Data
Volatility σ 0.2 Long-run Volatility of TFP
Portfolio constraint ψ̄ 10 Middle-40 pctl. portfolio share

Table 3: Calibrated parameters.

5.3 Comparison to Asset Pricing Data

Table 4 reports the asset pricing moments in the data and from the model. None of
the asset pricing moments are specifically targeted and hence a measure of success
of our model is to see how well it matches these moments. The table shows that
the model generates a sizable equity returns and risk premium, and also generates
endogenous volatility close to the data. Having the expert sector in the model helps
generate amplification. The agents in the model have CRRA utility with a risk aversion
parameter calibrated to γ = 3. Unlike Guvenen (2009), Gârleanu and Panageas
(2015), Gomez (2017) and Basak and Chabakauri (2024), we do not have preference
heterogeneity between the agents in the economy. More generally, the asset pricing
literature typically generates a high risk premium using either Epstein-Zin utility
and/or calibrating with a high risk aversion parameter. We require neither of these
features to match the equity premium since participation constraints of households
generate all the intended effects.

Data Model Source

E[Risk premium] 5.5% 3.8% Predictive regression
Std[Risk premium] 4.7% 1.1% Predictive regression
E[Equity returns] 6.4% 8.5% Amit Goyal’s website
Std[Equity returns] 19.3% 13% Amit Goyal’s website
E[Risk-free rate] 4.3% 4.5% Amit Goyal’s website

Table 4: The table reports the asset pricing moments in the data and the model. The time
period is from 1950Q1 till 2021Q1. All values are in annualized terms.
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5.4 Comparison to wealth distribution

(a) Data (Saez and Zucman (2016)) (b) Model

Figure 8: The left panel presents the share of total wealth for the households in top 1%,
middle 40%, and bottom 50%, respectively. The time period is from 1976 till 2023 at monthly
frequency. The data is taken from Saez and Zucman (2016). The right panel presents the share
of total wealth produced by the model for the same percentiles of household wealth.

Instead of matching specific moments of wealth distribution as in Gomez (2017), we
feed-in an initial wealth distribution resembling the data and track the model implied
evolution of wealth distribution over time. The left panel of Figure 8 displays the
empirical wealth distribution from Saez and Zucman (2016) between the time periods
1976 and 2023. The top 1 pctl. households start out at a lower share of total wealth
compared to the bottom 40 pctl., but gradually take over the latter. The bottom 50
pctl. households instead start with a much lower share of wealth, and remain there for
the rest of the time period. The right panel of Figure 8 displays the evolution of wealth
distribution implied by the model. It is important to note that the wealth distribution
is not particularly targeted in the calibration. The participation constraints on the
households alone generates and matches the empirical evolution of wealth share over a
comparable time period. While the share of wealth held by bottom 50 pctl. households
is close to zero in the data, we feed in a larger value because the wealth of the agents
do not go below zero like in the data due to their risk aversion. Nevertheless, the
model captures the declining trend of these households pretty well. Apart from such
minor differences in the way we feed in the initial distribution, the model successfully
captures the long-term trend of the “hollowing-out" of the wealth distribution. Notably,
in addition to the widening gap between the top 1 pctl. and bottom 50 pctl. households
that is much talked about the literature, the model also captures the declining wealth
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share of middle 40 pctl. households that resonates with the disappearance of middle-
class in the US.

Figure 9: The figure plots the model implied impulse response of wealth distribution to risk
premium (βp,h) obtained from the regression log

(
wp,t+h

wp,t

)
= αp,h + β̂p,hrpt × 1REC + ϵp,t+h.

The wealth levels are proxied by the wealth-shares ηp from the model for different percentiles.
The indicator function 1REC takes a value of 1 if productivity level is below its mean. The risk
premium rpt used in the regression is the model implied risk premium.

Lastly, we perform local projection using the model implied equilibrium quantities
to show the hollowing-out effect. Figure 9 displays the result where we regress change
in wealth shares of households in different wealth percentiles on the risk premium
implied by the model. Consistent with the empirical observation, the top 1-pct.
households have a higher exposure to risk premium compared to agents in the other
wealth percentiles. Admittedly, the effects on the middle 40 pctl. and bottom 50 pctl.
are much stronger than what we see in the data. This could be because in the data,
households have access to other assets such as housing, private equity, which affect
wealth distribution in complicated ways. Nevertheless, the local projections capture
the spirit of empirical observation which is that the equity markets have played a
dominant role in hollowing out the wealth distribution in the US.

5.5 Macroprudential Policy and Inequality

We close the paper by considering how macroprudential policy impacts inequality. We
do this by performing the following counterfactual exercise. We introduce an exogenous
leverage constraint θe,t = ℓ̄ for the intermediary sector. We then simulate a collection
of productivity paths, track the distribution evolution starting from the same initial
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wealth distribution as in section 5.4, and plot the fan chart for relative differences
between wealth share dynamics (in percentage) with and without the leverage constraint
in
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Figure 10: Forecasted distributional dynamics with ℓ̄ = 2.0. The left, middle and right panel
are fan charts of relative wealth share responses’ difference), at quantile 10%, 30 %, 50%,
70% and 90%. Subscript c stands for counter factual and b stands for baseline model without
leverage constraint (same as below).
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Figure 11: Forecasted distributional dynamics with ℓ̄ = 1.5. The left, middle and right panel
are fan charts of relative wealth share responses’ difference), at quantile 10%, 30 %, 50%, 70%
and 90%.

Figure 10 and 11 show the results from our counterfactual exercise. We can make the
following observations. First, the distributional responses are skewed. Intuitively, when
intermediary’s net worth level is low, the wealthiest household steps in and earns the
high return, which explains the skewness of responses. Second, intermediary leverage is
closely connected with the rate of recovery and overall inequality dynamics. Comparing
Figure 10 and Figure 11, we find that a tighter leverage constraint exacerbates inequality
and slows down the intermediary’s rate of recover. By contrast, a tighter leverage
constraint induces the household to hold more capital and thus furthers push up the
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premium, which is disproportionately earned by households at different wealth levels.

6 Conclusion

In this paper, we have studied the feedback between asset pricing and inequality when
there are participation constraints. This required us to develop a new methodology that
uses deep learning to characterize global solutions to macroeconomic models with long-
term assets, agent heterogeneity, and non-trivial household portfolio choice. We believe
this technique provides a general approach for exploring how asset pricing relates to
inequality across investors and institutions. We used a calibrated version of our model
to explore how limited participation in asset markets leads to amplification of the
capital price process. We find that our relatively simple model does a good job of
capturing the trend movements in inequality over the past half-century. We also find
that the financial sector stabilization increases inequality.
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A Recursive Characterization of Equilibrium

In this Appendix, we work through recursive characterization of equilibrium. We start
by setting up the optimization problem of the agents recursively in the “natural” state
variables:

(z,K, g = {ai}1≤i≤I).

This characterization is convenient for understanding the agent optimization problem
but turns out to be hard for the neural network to solve. We then characterize
equilibrium in space of wealth shares, which turns out be more convenient for training
the neural network.

A.1 Characterization in Natural State Variables

State variables and beliefs: We assume there exists a solution to the equilibrium that
is recursive in the aggregate state variables, (y,K, g), which we denote by (·). This
means that the states that appear in the household decision problem are (ai, ·). In
this case, beliefs about the price process can be characterized by beliefs about how the
distribution and aggregate capital stock evolves since prices are all implicitly functions
of the aggregate state variables. Formally, an agent’s beliefs about the evolution of
the distribution are characterized by their beliefs about the drift and covariance of
other agents wealth and the drift of capital stock, {µ̂aj (·), σ̂aj (·), µ̂K(·) : j ̸= i}, which
imply beliefs about prices through the pricing functions (r(·), q(·)). Technically, agents
also have beliefs about the evolution of other agent’s labor status but we leave that
implicit since it is unrelated to agent decisions. We let Vi(ai, ·) denote household i’s
value function. It is helpful to characterize the equilibrim in terms of three blocks.

1. Agent optimization block: Given their beliefs, agent i chooses (ci, bi) to solve the
Hamilton-Jacobi-Bellman Equation (HJBE) equation (A.1) below:

ρVi(ai, ·) = max
ci,bi,ιi

{
u(ci) + ψi(ai, bi, ·)aiΞi + ∂Vi

∂ai
µai(ai, ci, bi, ι, ·) + ∂Vi

∂z
µz

+ ∂Vi
∂K

µ̂K(·) + 1
2
∂2Vi
∂a2

i

σ2
ai

(bi, ·) + 1
2
∂2Vi
∂z2 σ

2
z + ∂2Vi

∂ai∂z
σai(bi, ·)σz

+
∑
j ̸=i

∂2Vi
∂aj∂z

σ̂aj (·)σz + 1
2

∑
j ̸=i,j′ ̸=i

∂2Vi
∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·)
} (A.1)

where the first two lines are the standard terms that would appear in the individual
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agent optimization problem, and the last lines capture the impact of the distribution
on the agent’s value function. The first order conditions with respect to (ci, bi) are
given by the following respectively:

[ci] : 0 = u′(ci) − ∂aVi(ai)

[bi] : 0 = − ∂Vi
∂ai

(r(·) − rk(·)) + ∂2Vi
∂a2

i

(ai − bi)σ2
q (·)

+ ∂2Vi
∂ai∂z

σq(·)σz(·) +
∑
j ̸=i

∂2Vi
∂ai∂aj

σq(·)σ̂aj (·) + ∂ψi
∂bi

Ξi

[ιi] : 0 = − 1
q̂(·) + ϕ′(ιi)

where Rk(·)−r(·) is the “risk-premium” in the economy. From these equations, we can
immediately see that ιi = (ϕ′)−1(1/q) =: ι is the same for agents.

2. State evolution block: The law of motion for each agent satisfies (2.2) and aggregate
capital stock satisfies:

dKt = (ϕ(ιt)Kt − δKt)dt. (A.2)

3. Market clearing and belief consistency block: The equilibrium pricing functions
(r(·), q(·)) are pinned down implicitly by the market clearing conditions in part 2 of
the equilibrium definition. Under this recursive characterization, the belief consistency
condition becomes that each agent has correct beliefs about the evolution of wealth for
the other agents and aggregate capital stock:

(
µ̂aj (·), σ̂aj (·), µ̂K(·)

)
=
(
µaj (·), σaj (·), µK(·)

)

A.2 Characterization as Master Equations in Wealth Shares

We now re-characterize the equilibrium as a collection of “master” differential equations
for the neural network to train. The first change is to the characterization of the
distribution. It turns out that the recursive characterization in agent wealth levels
leads to a complicated fixed point problem that is hard for the Neural Network to train
(we discuss in detail in Section 3.3 after we introduce the algorithm.). Instead, it will be
convenient to characterize the equilibrium in terms of wealth shares. Let A :=

∑
j≥1 aj
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denote total wealth in the economy. Let ηi := ai/A denote the share of wealth held by
agent i. Then, the aggregate state of the economy can be written in terms of wealth
shares as (z,K, {ηj , lj}j≥1). We can now restate the equilibrium conditions using the
wealth shares as the state. For notational convenience, we drop the explicit dependence
on (z,K, {ηj , lj}j≥1) and, where possible.

The second change is to work with the derivative of the value function. We define
the marginal value of wealth and the partial derivatives of the marginal value of wealth
(the so called “stochastic discount factors”) by:

ξi := ∂Vi
∂ai

, ∂aξi := ∂ξi
∂ai

= ∂2Vi
∂a2

i

, ∂ajξi := ∂ξi
∂aj

= ∂2Vi
∂aiaj

Once equilibrium is imposed, all the endogenous objects in the economy must be
functions of (z,K, {ηj , lj}j≥1). We can use Ito’s Lemma to express the drift and
volatility of ξi in terms of derivatives of ξi with respect to (z,K, {ηj , lj}j≥1) in equilibrium:

ξiµξi
= ∂ξi
∂z

µz + ∂ξi
∂K

µK +
∑
j

∂ξi
∂ηj

ηjµηj ,t +
∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz

+ 1
2
∂2ξi
∂z2 σ

2
z + 1

2
∑
j,j′

∂2ξ2
i

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t (A.3)

ξiσξi
= ∂ξi
∂z

σz +
∑
j

∂ξi
∂ηj

ηjσηj ,t. (A.4)

The third change is that we impose belief consistency and market clearing conditions,
where possible.

We now rewrite the general equilibrium blocks with these changes imposed.

1. Agent optimization block: Applying the Envelope Theorem to the HJBE (A.1),
imposing belief consistency, and using Ito’s Lemma to collect terms leads to the continuous
time Euler equation (the so called “master equation” for the economy) for ξi. We
work through the details heuristically and formally in Appendix A.3. Given prices
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(r, rk, q, µq, σq), agent optimization implies that (ξi, ci, bi, ιi) satisfy:

0 = − ρ+ r + µξi,t (A.5)

u′(ci) = ξi

r − rk = σξi
σq + ∂ψi

∂bi

∣∣∣
ai=ηiq

(A.6)

ιi = (ϕ′)−1
(
q−1

)
where µξi

satisfies (A.3) and σξi
satisfies (A.4).

2. State evolution block: Given prices (rt, rk, q, µq, σq) and agent optimization (ξ, c, b, ι),
we can use Ito’s Lemma to get the law of motion for each wealth share ηj,t = aj,t/(qtKt):

ηjµηj ,t = 1
aj,t

[
rk,t(aj,t − bj,t) + bj,trt − (u′)−1(ξj,t)

]
− µq,t − µK,t + σq,t

(
σq,t − 1

aj,t
(aj,t − bj,t)σq,t

)

= rk,t − µq,t − µK,t + bj,t
ηj,tqtKt

(rt − rk,t) − (u′)−1(ξj,t)
ηj,tqtKt

+ bj,t
ηj,tqtKt

σ2
q,t (A.7)

ηjσηj ,t = 1
aj,t

(aj,t − bj,t)σq,t − σq,t = − bj,t
ηj,tqtKt

σq,t (A.8)

The evolution of Kt once again satisfies (A.2).

3. Equilibrium block: The market clearing conditions now become:

∑
i

ci + Φ(ι)K = y
∑
i

bi = 0
∑
i

(ηiA− bi) = K

where the aggregate household wealth satisfies A :=
∑
j≥1 aj = qK and so the capital

market clearing condition simply becomes
∑
i ηi = 1. The risk free rate can only

be implicitly expressed in terms of the state variables through its dependence on the
stochastic processes for ξ and q (using the agent first order conditions):

r = rk + σξi
σq + ∂ψi

∂bi

The price of capital is even more difficult to handle because capital is a long-lived asset
for which the price can only be implicitly expressed in terms of the state variables using
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Itô’s Lemma:

qµq,t =
∑
j

∂q

∂ηj
ηjµηj ,t + ∂q

∂z
µz,t + ∂q

∂K
µK,t +

∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz

+ 1
2
∑
j,j′

∂2q

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t + 1

2
∂2q

∂z2σ
2
z +

∑
j

λ(lj)(q̃i,j − qi)

qσq,t =
∑
j

∂q

∂ηj
ηjσηj ,t + ∂q

∂z
σz,t.

These expressions for µq,t and σq,t are what makes the law of motion for capital
“consistent” with the process that we posited in the environment and so are often
referred to as the price consistency differential equations.

A.3 Derivations of Analytical Results

In this section, we provide the derivations for the Euler equation we used in Section
A.1. The first subsection introduces a heuristic derivation from a continuous-time
approximation of the discrete time Euler equation without financial frictions and jumps.
The second subsection derives from HJB equation and envelop theorem in the most
generic setup.

A.3.1 A Heuristic Derivation

We consider the discrete time version of Euler equation without jumps and financial
frictions:

E
[
β
u′(ct+1)
u′(ct)

(
qt+1 + dt+1

qt

)]
= 1,

where qt, qt+1 are asset price at time t and t + 1, dt+1 is the dividend at time t +
1. Note that marginal value of wealth is connected with marginal utility by optimal
consumption decision:

u′(ct) = ξt,

we could essentially rewrite Euler equation as:

E
[
β
ξt+1
ξt

(
qt + (dt+1 + qt+1 − qt)

qt

)]
= 1
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Now, consider the case that time step is sufficiently small, i.e., replace t+ 1 as t+ ∆t:

β = e−ρ∆t,

ξt+1
ξt

= 1 + µξ,t∆t+ σξ,t∆ϵ,
qt+1
qt

= 1 + µq,t∆t+ σq,t∆ϵ,

dt+1
qt

= πt∆t
qt

+ O(∆πt∆t
qt

),

where πt is the net profit process from production, ∆ϵ is normally distributed random
variable with mean zero and variance ∆t (E[∆ϵ∆ϵ] = ∆t). As we only keep up to order
of ∆t, the dividend price ration can be essentially simplified as dt+1

qt
= πt∆t

qt
. Plug in

all above equations, Euler Equation can be expressed as:

E
[
(1 − ρ∆t)(1 + µξ,t∆t+ σξ,t∆ϵ)

(
1 + (πt

qt
+ µq,t)∆t+ σq,t∆ϵ

)]
= 1

Drop all higher order terms ∆ϵ∆t,∆t∆t again, and we have:

−ρ+ µξ,t +
(
πt
qt

+ µq,t

)
︸ ︷︷ ︸

rq,t

+ σξ,tσq,t = 0 (A.9)

Similarly, we could also derive the Euler equation by considering the return on risk-free
assets, which is:

−ρ+ rt + µξ,t = 0 (A.10)

Taking the difference between (A.9) and (A.10), we get the first order condition for
portfolio choice again:

rq,t − rt = σξ,tσq,t.

With financial constrains, however, Euler equation becomes inequality and the above
derivations no longer apply. The next subsection explores the full problem in a recursive
way.
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A.3.2 Full Derivation

Taking the envelope condition and imposing belief consistency to get the continuous
time “Euler” equation. To apply all first order conditions, including the portfolio choice
and consumption decision, we first work on the wealth space, then convert to the wealth
share space and impose all equilibrium conditions.

Lets take the first order derivative w.r.t ai for the HJB equation (A.1):

ρ
∂Vi(ai, ·)
∂ai

=u′(ci)
∂ci(·)
∂ai

+
∂ψH(i)(ai, bi)

∂ai
+
∂ψH(i)(ai, bi)

∂bi

∂bi
∂ai

+ ∂2Vi
∂a2

i

µai(ai, ci, bi, ι, ·)

+ ∂Vi
∂ai

(∂µai(ai, ci, bi, ι, ·)
∂ai

+ ∂µai(ai, ci, bi, ι, ·)
∂ci

∂ci
∂ai

+ ∂µai(ai, ci, bi, ι, ·)
∂bi

∂bi
∂ai

)
+ 1

2
[∂3Vi
∂a3

i

σ2
ai

(bi, ·) + 2∂
2Vi
∂a2

i

σai(bi, ·)
(∂σai(bi, ·)

∂ai
+ ∂σai(bi, ·)

∂bi

∂bi
∂ai

)]
+ 1

2
∂3Vi
∂ai∂z2σ

2
z

+ ∂3Vi
∂a2

i ∂z
σai(bi, ·)σz + ∂2Vi

∂ai∂z

(∂σai(bi, ·)
∂ai

+ ∂σai(bi, ·)
∂bi

∂bi
∂ai

)
σz

+
∑
j ̸=i

∂3Vi
∂a2

i ∂aj
σai(bi, ·)σ̂aj (·) + ∂2Vi

∂ai∂aj

(∂σai(bi, ·)
∂ai

+ ∂σai(bi, ·)
∂bi

∂bi
∂ai

)
σ̂aj (·)

+
∑
j ̸=i

∂2Vi
∂ai∂aj

µ̂aj (·) +
∑
j ̸=i

∂3Vi
∂ai∂aj∂z

σ̂aj (·)σz + 1
2

∑
j ̸=i,j′ ̸=i

∂3Vi
∂ai∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·)

+ ∂2Vi
∂ai∂z

µz + ∂2Vi
∂ai∂K

µ̂K(·)

Note that all agents are not internalizing the price effect in the competitive equilibrium,
which means there is no need to further differentiate assets’ returns with respect to
ai. By plugging in all first order conditions, terms related to ∂ci(·)

∂ai
, ∂bi
∂ai

and ∂σai (bi,·)
∂ai

are canceled out. Rewrite the above equation in terms of marginal life-time utility
ξi = ∂Vi(ai,·)

∂ai
, the simplified expression of HJB after we take the first order derivative
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w.r.t ai is:

ρξi(ai, ·) =
∂ψH(i)(ai, bi)

∂ai
+ ∂ξi
∂ai

µai(ai, ci, bi, ι, ·) + r̂ξi(ai, ·)

+ ∂ξi
∂z

µz + ∂ξi
∂z

µ̂K(·) + 1
2
∂2ξi
∂a2

i

σ2
ai

(bi, ·)

+ 1
2
∂2ξi
∂z2 σ

2
z + ∂2ξi

∂ai∂z
σai(bi, ·)σz +

∑
j ̸=i

∂2ξi
∂ai∂aj

σai(bi, ·)σ̂aj (·)

+
∑
j ̸=i

∂ξi
∂aj

µ̂aj (·) +
∑
j ̸=i

∂2ξi
∂aj∂z

σ̂aj (·)σz + 1
2

∑
j ̸=i,j′ ̸=i

∂2ξi
∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·).

To further simplify the expression and make the connection to dynamics on the wealth
share space. We consider the generalized Itô’s lemma with jump for ξi. The expected
drift part contains µξi

ξi which summarizes the drift by continuous process.

µξi
ξi =∂ξi

∂ai
µai(ai, ci, bi, ι, ·) +

∑
j ̸=i

∂ξi
∂aj

µ̂aj (·) + ∂ξi
∂z

µz + ∂ξi
∂z

µ̂K(·)

+ 1
2
∂2ξi
∂a2

i

σ2
ai

(bi, ·) + 1
2
∂2ξi
∂z2 σ

2
z + 1

2
∑

j ̸=i,j′ ̸=i

∂2ξi
∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·)

+ ∂2ξi
∂ai∂z

σai(bi, ·)σz +
∑
j ̸=i

∂2ξi
∂ai∂aj

σai(bi, ·)σ̂aj (·) +
∑
j ̸=i

∂2ξi
∂aj∂z

σ̂aj (·)σz

Still, given all the states at time t, the value of µξi
won’t change if we switch to the

wealth share space. Plug in the expression for µξi
, then we can get Euler equation in

continuous-time as in equation (A.5).
To see the expression for risk-premium, we consider the volatility term, still as a

scalar which does not vary over different state spaces, loading on the aggregate shock
dWt in Itô’s lemma:

σξi
ξi = ∂ξi

∂ai
(ai − bi)σq +

∑
j ̸=i

σ̂aj (·) + ∂ξi
∂z

σz(·)

Plug it into the portfolio choice and we can get (A.6).

B Additional Details on The Algorithm

We start by reorganizing the set of equilibrium conditions to prepare the model for
neural network training. We start with consumption and goods market clearing. Let
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ωi := ci/ai = ci/(ηiq) and θi := bi/ai = bi/(ηiq) denote the equilibrium consumption-
to-wealth ratio and bond-to-wealth ratio for agent i. From the goods market clearing
condition, q satisfies:

q = ezK1−αL1−α + Φ((ϕ′)−1q−1)∑I
i=1 ωiηi

.

Individual SDFs can then be expressed as:

ξi = u′(ωiηiqK), for i ∈ {1, 2, ..., I},

We now combine the first order conditions for portfolio choice. Substituting equation
(A.8) (the Ito’s Lemma expansion of ηjσηj ) and equation (A.4) (the Ito’s Lemma
expansion of σξ) into equation (A.6) (the agent portfolio choice first order condition)
gives the equations:

ξi

(
r − rk
σq

)
=

∑
j<I−1

∂ξi
∂ηj

ηjσηj + ∂ξi
∂z

σz + 1
σq

∂ψi(ηiq,−η2
i σηiq/σq)

∂bi
, i = 1, . . . I

Rearranging and stacking the equations for i = 1, . . . I gives:

−σz



∂ξ1
∂z
...
...
∂ξI
∂z

 =



∂ξ1
∂η1

η1 ... ∂ξ1
∂ηI−1

ηI−1 ξ1
∂ξ2
∂η1

η1 ... ... ξ2
... ... ...

...
∂ξI
∂η1

η1 ... ∂ξI
∂ηI−1

ηI−1 ξI




ση1
...

σηI−1
rk−r
σq

+ 1
σq



∂ψ1
∂b1
∂ψ2
∂b2...
∂ψI
∂bI

 (B.1)

where the explicit dependence of ψi on σηi has been suppressed. This can be written
in matrix form in the following way:

−σz
∂ξξξ

∂z
= M

σσσηηη
s

+ 1
σq

diag
(
∂ψψψ

∂bbb

)
(B.2)

where the vectors are ξξξ := [ξ1, . . . , ξN ]T , ηηη := [η1, . . . , ηN−1]T , σσσηηη := [ση1 , . . . , σηN−1 ]T ,
ψψψ := [ψ1, . . . , ψN ]T , and bbb := [b1, . . . , bN ]T , s := rk−r

σq
is the Sharpe ratio, and M

denotes the matrix:

M :=

 ∂ξξξ
∂ηηη ⊙

 ηηη

|

 ξξξ
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Equation (B.2) shows the endogenous connection between agent wealth shares and the
stochastic price process: agent portfolio decisions react to the price process in the
economy and amplify the movement in the distribution. If ψi is linear in bi, then
equation (B.2) is a linear equation that can be solved explicitly for [σσσηηη, s]T .

Finally, we eliminate (ι, ccc, bbb, µξ, σξ, µK) from the equations in section A.2 by making
the appropriate substitutions. This leaves the following system of equations. At state
X = (z,K, (ηi)i≤I), the equilibrium objects (ξξξ, q,ωωω,σσσηηη, s, σq,θ, µη, µq, r) must satisfy
the collection of equations:

0 = (r − ρi)ξi + ∂ξi
∂z

µz + ∂ξi
∂K

(ϕ((ϕ′)−1(q−1))Kt − δKt)

+
∑
j

∂ξi
∂ηj

ηjµηj ,t +
∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz + 1
2
∂2ξi
∂z2 σ

2
z

+ 1
2
∑
j,j′

∂2ξ2
i

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t

q = ezK + Φ((ϕ′)−1(q−1))∑I
i=1 ωiηi

, (B.3)

ξi = u′ (ωiηiqK) , for i ∈ {1, ..., I},

0 = −

 ∂ξξξ
∂ηηη ⊙

 ηηη

|

 ξξξ

σσσηηη
s

− σz
∂ξξξ

∂z
− 1
σq

diag
(
∂ψψψ

∂bbb

)

qσq =
∑
j

∂q

∂ηj
ηjσηj + ∂q

∂z
σz

1 − θi = −
ηjσηj

σq
, for i ∈ {1, ..., I},

KµK =
(
ϕ
(
(ϕ′)−1

(
q−1

))
K − δKt

)
rk − µq = ez

q
− (ϕ′)−1 (q−1)

q
+ (ϕ(ιt) − δ) (B.4)

ηiµηi = rk − µq + θiσqs− µK − ωi + θiσ
2
q , for i ∈ {1, ..., I} (B.5)

qµq =
∑
j

∂q

∂ηj
ηjµηj + ∂q

∂z
µz + ∂q

∂K
µK +

∑
j

∂2ξi
∂z∂ηj

ηjσηjσz

r = σqs+ ez

q
− (ϕ′)−1(q−1)

q
+ (ϕ((ϕ′)−1(q−1)) − δ) + µq (B.6)

Discussion: In general, working in the wealth space {aj} features an additional non-
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trivial fixed point problem as the wealth dynamics contain µq and price dynamics
requires µaj . Thus, jointly pinning down µaj and µq requires a iterative scheme, as
proposed in the computation part of Guvenen (2009). However, in the wealth share
space the state dynamics do not depend on µq directly as implied by (B.5) and (B.4),
due to the price effect does not affect shares’ dynamics. Actually, the price’s geometric
drift only helps determine the risk free rate in (B.6) which enters into the Euler equation
as part of the final loss. Following the execution order from (B.3) to (B.6) turns out
to be critical.

C Three Testable Models

We compare neural network solution to analytical results (for complete market model)
and finite difference solutions (for incomplete market models) solved by HJB equations.

C.1 Complete Market Model

We make the following modifications to map the model mentioned in section 2 to a
Lucas Tree model. We set the capital share α to be one. We set both the capital
depreciation rate δ and the capital conversion function to be zero. We fix the capital
level Kt to be one and remove all penalty functions. To further simplify our notations,
we introduce the output level yt = ezt .

Without financial frictions, there is simple aggregation of individual’s Euler equations
as stated in main text, which coincides with the representative agent’s pricing equation.
Let us consider y’s process follows the geometric Brownian motion’s case:

dyt = µytdt+ σytdW
0
t .

In representative agent’s world, by standard Lucas tree pricing formula, asset price is
determined by discounted flow of dividend:

q(y0) = E
[∫ ∞

0
e−ρt u

′(ct)
u′(c0)ytdt

]
= y0E

[∫ ∞

0
e−ρt(yt/y0)1−γdt

]

Note that for geometric Brownian motion, the distribution of output is given by:

ln(yt/y0) ∼ N
(

(µ− 1
2σ

2)t, σ2t

)
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which means (the integral and expectation operator are interchangeable):

E(yt/y0)1−γ = (1 − γ)(µ− 1
2σ

2)t+ 1
2(1 − γ)2σ2t

= (1 − γ)µt+ 1
2(γ − 1)γσ2t

≡ −ǧt

Therefore, asset prices are given by:

q(y0) = y0

∫ ∞

0
e−ρte−ǧtdt = y0

ρ+ ǧ
= y0

ρ+ (γ − 1)µ− 1
2γ(γ − 1)σ2

By goods market clearing condition, we know that ct = yt, which means the consumption
policy is:

c =
[
ρ+ (γ − 1)µ− 1

2γ(γ − 1)σ2
]
q

For γ = 5, µ = 0.02, σ = 0.05, ρ = 0.05 in the numerical example, c/q = 10.5%, which
means: q(1) = 1/10.5% ≈ 9.5.

Though aggregation results hold, we still incorporate the wealth heterogeneity and
solve by our algorithm. Note that the instant risk allocation is determined by simple
matrix inversion from (B.1) and there’s no other unknowns for price’s risk consistency,
it is unnecessary to parameterize σq. We find that our solution aligns with the “as-if”
representative agent’s solution quite well. The estimated time cost for model with 5
agents is about 2 mins, 10 agents is about 10 mins and 20 agents is about 20 mins. The
difference between consumption rule solved neural network and analytical solution is
less than 0.1% (for 5, 20 agents)/ 0.5% (for 20 agents).

Num of Agents Euler Eq Error Diff Time Cost
5 <1e-4 <0.1% 2 mins
10 <1e-4 <0.5% 10 mins
20 <1e-3 <0.5% 20 mins

Table 5: Summary of the algorithm performance and computational speed. “Diff” means
the difference between representative agent case’s solution and brute-force. All errors are in
absolute value (L1 loss).
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Figure 12: Solution to As-if representative agent model. Right panel: consumption-wealth
ratio of agent 1.

C.2 Asset Pricing with Restricted Participation

We still adopt the modifications that are done in the first subsection to mimic the
endowment economy. There are two price taking agents in this infinite horizon economy:
expert and household. The financial friction we use is that household cannot participate
the stock market. Mathematically, it is stated as:

Ψi(ai, bi) = − ψ̄i
2 (ai − bi)2, ψ̄h = ∞, ψ̄e = 0.

Again, the output yt follows a geometric Brownian motion:

dyt = µytdt+ σdZt.

Boundary Conditions. We focus on the case that η ∈ (0, 1], as the economy is
ill-defined when experts are wiped out from the economy, i.e., nobody holds the tree
in equilibrium. To get the right boundary, we use the asset prices and consumption
policy ωe from the representative agent’s solution:

ωe(1, y) = ρe + (γ − 1)µ− 1
2γ(γ − 1)σ2, q(1, y) = y

ωe(1, y) .
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Figure 13: Solution to restricted stock market participation model.

Model Solution. The estimated time to solve the limited participation problem
by neural network is about 5 minutes. We compare the finite difference solution
(technical details can be found from the appendix) with the neural network solution
on η’s dimension in figure 13 for y = 1. We can see that neural network well captures
the high non-linearity (left-upper panel) and amplification (right-lower panel) by high
risk-aversion.

C.3 A Macroeconomic Model with Productivity Gap

The setup follows Brunnermeier and Sannikov (2016). There are two types of agents
in this infinite horizon economy: experts and households. We allow households to hold
capitals but in a less productive way. The productivity of experts and households is
zh, ze (zh < ze) respectively. Their relative risk-aversion are both γ. Output grows
at exogenous drift µy = yµ, volatilty yσ, and experts cannot issue outside equities.
In addition, we assume there’s a constraint for no short-selling from households’ side,
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which can be formally written as:
Ψh(ah, bh) = − ψ̄h

2 (min{ah − bh, 0})2, ψ̄h = ∞

Ψe(ae, be) = − ψ̄e
2 (ae − be)2, ψ̄e = 0.

The output flow on households’ side and experts’ side can be written as:

de,t = zeyt, dh,t = zhyt, dyt = ytµdt+ ytσdZt

The capital return from households’ side and experts’ side:

rq,e,t = de,t
qt

+ µq,t, rq,h,t = dh,t
qt

+ µq,t.

We could rewrite the financial friction as return’s gap: ae−ah
qσq . For the first two

equations, we have:
− 1
ξe

∂ξe
∂y

σy = 1
ξe

∂ξe
∂η

ση − rf − rq,h
σq

+ ye − yh
qσq

− 1
ξh

∂ξh
∂y

σy = 1
ξh

∂ξh
∂η

ση − rf − rq,h
σq

+ 0
⇔ nnn = M

 ση
rf −rq,h

σq

+

ye−yh
qσq

0


︸ ︷︷ ︸

∂2ψψψ

The main difficulty for Brunnermeier and Sannikov (2016)’s model is that we need
to preserve computational graph when output is a function of risk allocation, which
means resorting to non linear solver, as in Gopalakrishna (2021), is not applicable here.
The algorithm in section 3 still applies here, however. Compared to the previous two
examples, we have to parameterize only one more equilibrium object, because of the
closed form relationships between the equilibrium objects. In practice, we introduce
the auxiliary neural network for the capital allocation (or say, the output function),
which turned to be most efficient, κ = η+λ = η+Nλη

β, where Nλ is a trainable neural
net and β is solved from the asymptotic solution for η → 0. Such parameterization
effectively captures the high non-linearity as η goes to zero.

Model Solution. The estimated time to solve the model by neural network is about 5
minutes. Again, we compare the finite difference solution with neural network solution
in figure 14 for y = 1. We set up the range of η to be the crisis region in Brunnermeier
and Sannikov (2016), which is defined by inefficient capital allocation as κ < 1. We
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can see that the neural network solution well captures most of the amplification in that
crisis region, despite the volatility gap between finite difference solution and neural
network’s when η → 0, which is not quantitatively relevant because of the negligible
amount of time the economy spends in this deep crisis region. Matching such extremely
high non-linearity as η goes to be very close to zero has already been studied well in
Gopalakrishna (2021) and is beyond the scope of our paper.
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Figure 14: Solution to the model with productivity gap.

D Finite Difference Solutions

We exploit the scalability, as in textbook Campbell and Viceira (2002), for geometric
Brownian motion’s case to get a preciser solution by focusing only on one dimensional
differential equation. For scalable income process, we postulate the price function as:
q = f(η)y, where η is the expert’s wealth share with no loss of generality, i.e., η = η1.
The value function can be written as:

Vi = 1
ρi

(ωiηiq)1−γ

1 − γ
= (ωiηif(η))1−γ

ρi

y1−γ

1 − γ
≡ vi

y1−γ

1 − γ
,
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where vi can be viewed as the value function on η’s space only. From the first order
condition7:

c−γ
i = 1

ρi

(ωiηiq)1−γ

ηiq
⇒
(
ci
y

)γ
= ηif(η)

vi
, ωi = [ηif(η)]

1
γ

−1
v

− 1
γ

i (D.1)

From the goods market clearing conditon, we have:

1 =
∑
i ci
y

=
∑
i

(
ηif(η)
vi

) 1
γ

= y ⇒ f(η) = 1[∑
i

(
ηi
vi

) 1
γ

]γ (D.2)

The HJB for scaled value functionvi (note: for y1−γ which appears in V , we still need
to take the Itô’s lemma on it)

[ρi − (1 − γ)µ+ γ

2 (1 − γ)σ2 − ωi]vi = [µη + (1 − γ)σση]η
∂vi
∂η

+ 1
2
∂2vi
∂η2 η

2σ2
η (D.3)

where µη, ση are from (A.7) and (A.8). The price of risk which appears in the asset
pricing condition is determined by Itô’s Lemma:

ξi = vi
ηif(η)y

−γ ⇒ σξ = σv − σf − ση − γσ = v′
i(η)ηση
vi

− f ′(η)ηση
f

− ση − γσ.

In finite difference, we introduce the pseudo time-steps (D.3):

[ρi − (1 − γ)µ+ γ

2 (1 − γ)σ2 − ωi]vi = [µη + (1 − γ)σση]η
∂vi
∂η

+ 1
2
∂2vi
∂η2 η

2σ2
η + ∂vi

∂t
,

and update value function in an implicit scheme to solve equation

ρ̌ρρIvt+dt = Mvt+dt + vt+dt − vt
dt

,

where M is the differential matrix by upwind scheme, and I is the identity matrix.
7This expression leads to the boundary condition at η = 1: f(1)

ve
= 1
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D.1 Solution to the Limited Participation Model

The distributional dynamics for limited participation model are:

µη =(1 − η)(ωh − ωe) +
(

−1 − η

η

)
(rf − rq + (σq)2)

ση =1 − η

η
σq,where rf − rq = σξσq.

By the consistency condition for price volatility, we have:

f(η)yσq = f ′(η)yση + f(η)σy → σq = σ

1 − f ′(η)
f(η) (1 − η)

.

The boundary conditions: f(1) = 1
ρe+(γ−1)µ− 1

2γ(γ−1)σ2 , ve(1) = f(1).

Algorithm. Set up grids: ηn = linspace(∆η, 1 − ∆η, 1/∆η − 1). Initialize the value
function as vi,0(·) = ρi + (γ − 1)µ− 1

2γ(γ − 1)σ2.
While Error > ϵ:

1. Compute ωe, ωh, f(η) by equation (D.1), (D.2).

2. Compute dq
dη ,

dve
dη ,

dvh
dη by upwind scheme, use the boundary condition if µ1−∆η > 0

required.

3. Construct the terms in HJB. Then update vi,t+dt by implicit scheme.

4. Compute Error = |ve,t+dt − ve,t| + |vh,t+dt − vh,t|

D.2 Solution to the Macroeconomic Model with a Financial Sector

Given the expert’s capital share holding κ, the wealth share η’s risk ση is (κ − η)σq.
The goods market clearing condition (D.2) is replaced by:

f(η) = κη + (1 − κ)(1 − η)[∑
i

(
ηi
vi

) 1
γ

]γ
By the consistency condition for price volatility, we have:

f(η)yσq = f ′(η)yση + f(η)σy → σq = σ

1 − f ′(η)
f(η) (κ− η)

53



The boundary conditions are f(0) = ah
ωh(0) , f(1) = ae

ωe(1) .

Algorithm. Set up grids: ηn = linspace(∆η, 1 − ∆η, 1/∆η − 1). Initialize the value
function as vi,0(·) = ρi + (γ − 1)µ− 1

2γ(γ − 1)σ2.
While Error > ϵ:

1. Compute ωe, ωh by equation (D.1).

2. Approximate f ′(η) by finite difference. For η = ∆η : ∆η : 1 − ∆η, solve
(f(η), κ, σq) from the following set of equations: (1) if κ < 1

ρeωeη + ρhωh(1 − η) = κze + (1 − κ)zh

σq = σ

1 − f ′(η)
f(η) (κ− η)

ze − zh
q

= κ− η

η(1 − η)σ
2
q .

(D.4)

(2) if κ > 1, set κ to be 1, then only solve q, σq from the first two equations in
(D.4).

3. Compute dve
dη ,

dvh
dη by upwind scheme.

4. Construct the terms in HJB. Then update vi,t+dt by implicit scheme.

5. Compute Error = |ve,t+dt − ve,t| + |vh,t+dt − vh,t|

E Proofs for Section 4

Approximate consumption-wealth ratio under log-utility. We now investigate if the constant
consumption-to-wealth ratio satisfies the Euler equation. Due to the participation
frictions, net worth share dynamics affect the risk premium and in turn affects the
risk free rate. We assume constant consumption wealth ratio ci/ai = ρi, then by Itô’s
Lemma

E
d

dt
[1/(ρiηiq)] = − 1

ρiηiq2 qµq − 1
ρiη2

i q
ηiµη,i + 1

ρiη3
i q
σ2
η,iη

2
i

+ 1
ρiηiq3σ

2
qq

2 + 1
ρiη2

i q
2ση,iηiσqq,
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which means the geometric drift of SDF can thus be expressed as:

µξ,i = −µη,i − µq + ση,iσq + σ2
η,i + σ2

q .

The left hand side of the Euler equation then can be expressed as:

−ρi + rf + µξ,i = −ρi + rf − µη,i − µq − ση,iσq + σ2
η,i + σ2

q

= −ρi + rf +
(

−y

q
− θi(rf − rq + σ2

q ) + ρi

)
︸ ︷︷ ︸

=µη,i

− µq + ση,iσq + σ2
η,i + σ2

q

= (rf − rq + σ2
q ) − θi(rf − rq + σ2

q ) + θ2
i σ

2
q − θiσ

2
q

= (1 − θi)(rf − rq + σ2
q (1 − θi))

For experts, their asset pricing equation implies rf − rq = (θN − 1)σ2
q , which means the

Euler equation is satisfied with the ansatz that consumption wealth ratio is ρe.
For households, we plug in the households’ asset pricing conditions rf − rq = (θi −

1)σ2
q + k

ηi
(θi − 1), and we can see that the LHS of Euler equation equals:

−(1 − θi)2 k

ηi
.

Though mathematically the assumption for households ci/ai = ρi is not self-contained,
the loss for Euler equation is extremely small, because of the fact that k is same order
of magnitude of σ2

q . Therefore, L2 Loss of Euler equation is:

L2
Euler,i = O(σ4

q ) < O(σ4) ∼ 10−6.

Experts are levered. We first use capital market clearing condition to solve the risk
premium:

(
I−1∑
i=1

η2
i,t

ψ̄ + σ2
q,tηi

+ ηI,t
σ2
q,t

)
(rq − rf ) = 1.
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Therefore, expert’s portfolio share on capital is solved as:

θI = 1
σ2
q

1
ηI

σ2
q

+
∑I−1
i=1

η2
i

ψ̄+ηiσ2
q

,

which is greater than one since:

1
σ2
q

1
ηI

σ2
q

+
∑I−1
i=1

η2
i

ψ̄+ηiσ2
q

>
1
σ2
q

1
ηI

σ2
q

+
∑I−1
i=1

η2
i

ηiσ2
q

= 1
σ2
q

σ2
q

ηI +
∑I−1
i=1 ηi

= 1

Proof of Theorem 1. As experts are levered, we know 1/σq is uniformly bounded. We
first consider the case that ψ̄ → 0. It can be shown that:

lim
ψ̄→0

ηi

ψ̄+ηiσ2
q

ηI

σ2
q

+
∑I−1
i=1

η2
i

ψ̄+ηiσ2
q

=
1
σ2

q

1
σ2

q

= 1,

as household’s portfolio choice is continuous function of ψ̄. On the other extreme
ψ̄ → ∞, recall that we know σq ≤ σ by the expression for σq. Taking the limit we know
θi = 0, for i ∈ {1, ..., I}. In these two extreme cases, portfolio differences (θj,t − θi,t)
are both zero.

To understand the price volatility dynamics, we rewrite the derivatives ∂q/∂ηi by
chain rule:

∂q

∂ηi
= ∂q

∂ηh

∂ηh
∂ηi

,

where ηh is
∑I−1
i=1 ηi, total household wealth share. The consistency condition for capital

volatility process can be simplified as

qσq = qσ + ∂q

∂ηh
σq

I−1∑
i=1

(−θi)ηi = qσ + ∂q

∂ηI
(−θIηI)σq

where we applied the bonds market clearing condition. Combine with the intermediary’s
asset pricing condition: rf − rq = −σ2

qθI , we know that aggregate households’ wealth
share is sufficient for asset pricing.

Proof of Theorem 2. We characterize the asymptotic solution for price volatility and
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experts’ leverage given a low ηN , with different level of participation friction. We first
show that, given participation friction k, as η → 0, the price volatility will converge to
fundamental volatility. Recall that the expert’s capital-wealth ratio is given by:

θI = 1
σ2
q

1
ηI

σ2
q

+
∑I−1
i=1

η2
i

ψ̄+ηiσ2
q

.

Since η2
i

ψ̄+ηiσ2
q

is a convex function, given the expert’s sector wealth level ηI = 1−
∑I−1
i=1 ηi,

we know that:

(I − 1) η̄2
h

ψ̄ + η̄hσ2
q

≤
I−1∑
i=1

η2
i

ψ̄ + ηiσ2
q

≤ (1 − ηI)2

ψ̄ + (1 − ηI)σ2
q

,

where η̄h is defined as 1−ηI
I−1 , and σq is still determined by households’ wealth distribution

{η1, ..., ηI−1}. Using the inequality above, we know that:

1
σ2
q

1
ηI

σ2
q

+ (1 − ηI) (1−ηI)
ψ̄+(1−ηI)σ2

q

≤ θI ≤ 1
σ2
q

1
ηI

σ2
q

+ (1 − ηI) η̄h
k+η̄hσ2

q

,

which can be simplified as:

ψ̄
σ2

q
+ (1 − ηI)

ψ̄
σ2

q
ηI + (1 − ηI)

≤ θI ≤
(I−1)ψ̄
σ2

q
+ (1 − ηI)

(I−1)ψ̄
σ2

q
ηI + (1 − ηI)

.

To show that the endogenous price volatility is exactly the fundamental volatility, we
consider the range of −θNηI . We deduct both side by 1 and multiply both side by ηI :

ψ̄
σ2

q
(1 − ηI)

ψ̄
σ2

q
ηI + (1 − ηI)

ηI ≤ ηI(θI − 1) ≤
(I−1)ψ̄
σ2

q
(1 − ηI)

(I−1)ψ̄
σ2

q
ηI + (1 − ηI)

ηI .

Note that 1/σq is uniformly bounded, when taking the limit ηI → 0, we know limηI→0 θNηI =
0 by the squeeze theorem. Thus, the term ∂q

∂ηI
(−θIηI)σq is zero at the limit ηI = 0.

Next, for a given small expert wealth share ηI the range for debt wealth ratio 1−θN
is:

− ψ̄

σ2 ≥ 1 − θI ≥ −(I − 1)ψ̄
σ2

57



On one extreme, when the inequality within households is high, the expert’s leverage
ratio is ψ̄

σ2 . On the other extreme, inequality within households is low, the expert’s
leverage ratio is (I−1)ψ̄

σ2 . These two extreme cases shed lights on how household’s side
inequality determines total household sector’s capital share which in turn shapes the
intermediary risk taking and affects negatively on its recovery condition on recessions.
The proof for generic household distribution is straight forward by the convexity of
household’s capital taking function.

F Parameters for Testable Models

F.1 Economic Parameters

F.1.1 Parameters for the “as-if” Complete Market Model

Parameter Symbol Value
Risk aversion γ 5.0
Agents’ Discount rate ρ 0.05
Output Growth Rate µ 2%
Volatility of Growth σ 5%

F.1.2 Parameters for the Limited Participation Model

Parameter Symbol Value
Risk aversion γ 5.0
Households’ Discount rate ρh 0.05
Experts’ Discount rate ρh 0.05
Output Growth Rate µ 2%
Volatility of Growth σ 5%
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F.1.3 Parameters for the Macroeconomic Model with a Financial Sector

Parameter Symbol Value
Risk aversion γ 1.0
Households’ Discount rate ρh 0.04
Experts’ Discount rate ρe 0.06
Households’ Productivity ze 0.11
Experts’ Productivity zh 0.05
Output Growth Rate µ 2%
Volatility of Growth σ 5%
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