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Many Economic Questions Involve Distributions Across Agents
I How do tax policies impact wealth inequality?

(distribution of agent asset holdings)

I How do recessions impact wage and employment dispersion?
(distribution of labor income across skills, education, and industries)

I How do innovation and trade shocks spread across firms (or countries)?
(distribution of production technologies across firms)

I How do crisis shocks propagate through financial networks?
(distribution of risk exposure across banks)

I What determines the distribution of city sizes?
(distribution of population and firms across cities)

I . . . These and many, many other questions require “heterogeneous agent models”
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Technical Challenges and Solutions
I Problem: Hard to solve macro models with heterogeneous agents + aggregate shocks.

I Infinite dimensional distribution becomes a state variable.
I Traditional techniques: (linear/quadratic) perturbation, and approximate laws of motion.

I Our goal: develop a global solution technique for continuous macro time models:
I Step 1: derive finite dimensional approximation to the distribution

(finite agents, discrete state space, projections onto basis)
I Step 2: train neural networks to solve the resulting high dimensional PDEs.

I This talk: discuss practical lessons from three of my papers:
I Gu-Lauriere-Merkel-Payne (2024): solves business-cycle style macro models.
I Payne-Rebei-Yang (2024): solves searching and maching models.
I Gopalakrishna-Gu-Payne (2024): solves macro-finance models with implicit prices.

Deep learning o�ers the toolkit for heterogeneous agent macroeconomics
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Environment (Continuous Time Krusell-Smith ’98)

I Continuous time, infinite horizon economy.

I Populated by I = [0, 1] households who consume goods, supply labor, and save wealth.

I Representative firm rents capital and labor to produce goods by Yt = e
ztK

–
t L

1≠–
t :

I Kt is capital hired, Lt is labor hired,
I zt is productivity (exogenous aggregate state variable): follows dzt = ÷(z̄ ≠ zt)dt + ‡dB

0
t

I B
0
t

is a common Brownian motion process; it generates filtration F0
t
.

I Competitive markets for goods (numeraire), capital (rental rate rt), labor (wage wt).
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Household Problem
I Household i has idiosyncratic state x

i
t = (ai

t, n
i
t), where a

i
t is wealth, n

i
t is labor.

I Given belief about price processes, (r̃, w̃), household chooses consumption c = {c
i
t}tØ0:

max
{ci

t}tØ0
E0

5⁄ Œ

0

e
≠flt

u(ci
t)dt

6

s.t. da
i
t = (w̃tn

i
t + r̃ta

i
t ≠ c

i
t)dt =: µ

a
t dt, a

i
t Ø a

n
i
t œ {n1, n2}, switches at idiosyncratic Poisson rate ⁄(ni

t)

(1)

I u(c) = c
1≠“

/(1 ≠ “): utility function, fl: discount rate, a: borrowing limit.
I (r̃, w̃) = {r̃t, w̃t}tØ0 are agent beliefs about prices processes.

I Let Gt = L(ai
t|F0

t ) and gt be population distribution and density of a
i
t, for history F0

t

I Non degenerate since households get uninsurable idiosyncratic labor endowment shocks.
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Equilibrium
Definition: Given an initial density g0, an equilibrium for this economy consists of a
collection of F0

t -adapted stochastic process, {c
i
t, gt, zt, qt := [rt, wt] : t Ø 0, i œ I}, s.t.:

1. Given price process belief q̃, household consumption process, c
i
t, solves problem (1),

2. Given price process belief q̃, firm choose capital and labor optimally:

rt = e
ztˆKF (Kt, L) ≠ ”, wt = e

ztˆLF (Kt, L)

3. The price vector qt = [rt, wt] satisfies market clearing conditions:

Kt =
ÿ

jœ{1,2}

⁄
agt(a, nj)da, L =

ÿ

jœ{1,2}

⁄
njgt(a, nj)da

4. Agent beliefs about the price process are consistent: q̃ = q
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Equilibrium (Combining Equations For Prices)
Definition: Given an initial density g0, an equilibrium for this economy consists of a
collection of F0

t -adapted stochastic process, {c
i
t, gt, qt := [rt, wt], zt : t Ø 0, i œ I}, s.t.:

1. Given price process belief q̃, household consumption process, c
i
t, solves problem (1),

2. The price vector qt = [rt, wt] satisfies:

qt =
C

rt

wt

D

=
C
e

ztˆKF (Kt, L) ≠ ”

e
ztˆLF (Kt, L)

D

=: Q(zt, gt), where Kt =
ÿ

jœ{1,2}

⁄
agt(a, nj)da,

3. Agent beliefs about the price process are consistent: q̃ = q.

Having closed form expressions for prices in terms of (zt, gt) makes problem very tractable
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Recursive Representation of Equilibrium
I Aggregate states: (z, g), individual states: x = (a, n), household value fn: V (a, n, z, g).

I Given a belief dgt(x) = µ̃g(zt, gt)dt, household at x = (a, n) choose c to solve HJBE:

0 = max
c

Ó
≠ flV (a, n, z, g) + u(c) + ˆaV (a, n, z, g)(w(z, g)n + r(z, g)a ≠ c)

+⁄(n) (V (a, ň, z, g) ≠ V (a, n, z, g)) + ˆzV (a, n, z, g)µz(z) + 0.5 (‡z)2
ˆzzV (a, n, z, g)

+
⁄

X
ˆgV (y, z, g)µ̃g(y, z, g)dy

Ô
, s.t. BC: ˆaV |a=a Ø u

Õ(wn + ra)

where ň is complement of n.

I For optimal policy rule c
ú(a, n, z, g; µ̃

g) and zt, population density, g, evolves by KFE:

dgt(a, n) = [≠ˆa[(w(z, g)n + r(z, g)a ≠ c
ú)gt(a, n)] ≠ ⁄(n)gt(a, n) + ⁄(ň)gt(a, ň)]

¸ ˚˙ ˝
=:µg(at,nt,zt,gt;µ̃g)

dt

I In equilibrium µ̃
g = µ

g.
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Recursive Representation of Equilibrium (Soft Borrowing Constraint)
I Aggregate states: (z, g), individual states: x = (a, n), household value fn: V (a, n, z, g).

I Given a belief dgt(x) = µ̃g(zt, gt)dt, household at x = (a, n) choose c to solve HJBE:

0 = max
c

Ó
≠ flV (a, n, z, g) + u(c)≠1atÆaÂ(at) + ˆaV (a, n, z, g)(w(z, g)n + r(z, g)a ≠ c)

+ ⁄(n) (V (a, ň, z, g) ≠ V (a, n, z, g)) + ˆzV (a, n, z, g)µz(z) + 0.5 (‡z)2
ˆzzV (a, n, z, g)

+
⁄

X
ˆgV (y, z, g)µ̃g(y, z, g)dy

Ô
, s.t. (((((((((((

BC: ˆaV |a=a Ø u
Õ(·), Â(a) = ≠1

2Ÿ(a ≠ a)2

where ň is complement of n.

I For optimal policy rule c
ú(a, n, z, g; µ̃

g) and zt, population density, g, evolves by KFE:

dgt(a, n) = [≠ˆa[(w(z, g)n + r(z, g)a ≠ c
ú)gt(a, n)] ≠ ⁄(n)gt(a, n) + ⁄(ň)gt(a, ň)]

¸ ˚˙ ˝
=:µg(cú

t ,at,nt,zt,gt;µ̃g)

dt

I In equilibrium µ̃
g = µ

g.
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“Master Equation” Representation of Equilibrium
I “Master equation” substitutes KFE, market clearing & belief consistency into HJBE.

I Equilibrium value function V (a, n, z, g) characterized by one PDE (if it exists):

0 = ≠ flV (a, n, z, g) + u(cú(a, n, z, g)) + 1atÆaÂ(at)
+ ˆaV (a, n, z, g)(w(z, g)n + r(z, g)a ≠ c

ú(a, n, z, g))
+ ⁄(x) (V (a, ň, z, g) ≠ V (a, n, z, g)) + ˆzV (a, n, z, g)µz(z) + 0.5 (‡z)2

ˆzzV (a, n, z, g)

+
⁄

X
ˆgV (y, z, g)µg(cú(y, z, g), y, z, g)dy =: LV

where the optimal control c
ú is characterised by: u

Õ(cú(a, n, z, g)) = ˆaV (a, n, z, g).

I Theory: studies whether this master equation exists; e.g. [Cardaliaguet et al., 2015]

I Our paper: look for a “global” finite, but high, dimensional approximation to V
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Numerical Approximation Outline

I Goal: characterize approximate solution to Master equation numerically

I Problem: Master equation contains an infinite dimensional derivative.

I Solution: three main ingredients:
1. High but finite dimensional approximation to distribution and Master equation:

(i). Replace continuum of agents by a finite population of agents, or
(ii). Discretize the wealth variable, or
(ii). Project distribution onto a finite dimensional set of basis functions bi(x)

(e.g. eigenfunctions, Chebyshev polynomials, neural network, . . . ).

2. Parameterize V by neural network, and

3. Train the parameters to minimize the (approximate) master equation residual.
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Ingredient 1: Finite Dimensional “Distribution” Approximation

Finite Population Discrete State Projection

Params Ï̂ Agent states
Ï̂t = {(ai

t, n
i
t)}iÆN

Masses on grid
Ï̂i,t, ’(ai

, n
i)iÆN

Basis coe�cients
Ï̂i,t, ’bi(a; n)|iÆN

Dist. approx. 1

N

qN
i=1

”
(ai

t,ni
t)

qN
i=1

Ï̂i,t”(ai,ni)

qN
i=0

Ï̂i,tbi(a; n)

KFE approx.
(µÏ̂)

Evolution of other
agents’ states

Evolution of mass
between grid points
(e.g. finite di�.)

Evolution of projec-
tion coe�cients
(least squares)

Dimension (N) ¥ 50 ¥ 200 ¥ 5

Projections more easily capture shape but have complicated KFE approximation
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Ingredient 2: Approximate V by Neural Network
I Let ! = (a, n, z, Ï̂). Approximate value function V (!) by neural network with form:

h(1) = „
(1)(W (1)! + b(1)) . . . Hidden layer 1

h(2) = „
(2)(W (2)h(1) + b(2)) . . . Hidden layer 2

...
h(H) = „

(H)(W (H)h(H≠1) + b(H)) . . . Hidden layer H
S = ‡(h(H)) . . . Surplus

I Terminology: a fully connected feed forward NN (finite agent params in blue):
I H: is the number of hidden layers, (H = 5)
I Length of vector h(i): number of neurons in hidden layer i, (Length = 64)
I „

(i): is the activation function for hidden layer i, („i = tanh)
I ‡: is the activation function for the final layer, (soft-plus)
I ⇥ = (W 1

, . . . W
(H)

, b
(1)

, . . . , b
(H)) are the parameters,

I Discrete state, projection more complicated NN [Sirignano and Spiliopoulos, 2018].
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Ingredient 3: Algorithm (“EMINN” or “Economic Deep Galerkin”)

1: Initialize the neural networks approximation for V̂ with parameters �.
2: while Loss > tolerance do
3: Sample M new training points: S = (Sm = (am

, n
m

, z
m

, (Ï̂m
i )iÆN ))M

m=1
.

4: Calculate the weighted average error across sample points, given current �:

E(S; �) = Ÿ
e 1
M

ÿ

mÆM

|L̂(am
, n

m
, z

m
, (Ï̂m

i )iÆN ; �)| + Ÿ
sEs(S; �), where

I L̂(am
, n

m
, z

m
, (Ï̂m

i )iÆN ; �) is error in Master equation L̂ at training point Sm

(where derivates in L̂ are calculated using automatic di�erentiation.)
I Es(S; �) is penalty for “wrong” shape (e.g. penalty for non-concavity of V )

5: Update parameters � by stochastic gradient descent: �new = �old ≠ –D�E(S; �)
6: end while
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The Macroeconomic Deep Learning Conundrum

I Algorithm is straightforward to describe and code

I . . . but hard to implement successfully!

I I will discuss some features that we have found helpful.
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Sampling Approaches
I Sampling (a, n, z): draw from uniform distribution, then add draws where error high.

I Sampling the parameters in the distribution approximation (Ï̂i)iÆN :
I Moment sampling:

1. Draw samples for selected moments of the distribution (that are important for Q̂(z, Ï̂)).
2. Sample Ï̂ from a distribution that satisfies the moments drawn in the first step.

I Mixed steady state sampling:
1. Solve for the steady state for a collection of fixed aggregate states z.
2. Draw random, perturbed mixtures of this collection of steady state distributions.

I Ergodic sampling:
1. Simulate economy using current value function approximation.
2. Use simulated distributions as training points.

Need to choose economically relevant subspace on which to sample.
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Implementation Details

Finite Population Discrete State Projection
Neural Network
(i) Structure Feed-forward Recurrent + embedding Recurrent + embedding
(ii) Initialization W (a, ·) = e≠a random random
Sampling
(i) (a, l) Active sampling

[a, a] ◊ {y1, y2}
Uniform sampling
[a, a] ◊ {y1, y2}

Uniform sampling
[a, a] ◊ {y1, y2}

(ii) (Ï̂i)iÆN Moment sampling: sam-
ple r, then random agents
positions that give r

Mixed steady-state sam-
pling then ergodic sam-
pling

Sample K and then or-
thogonal coe�cients from
ergodic sampling

(iii) z U [zmin, zmax] U [zmin, zmax] U [zmin, zmax]
Loss Function
(i) Constraints ˆaaV (a, ·), ˆzaV (a, ·) < 0 ˆaaV (a, ·), ˆzaV (a, ·) < 0 ˆaaV (a, ·), ˆzaV (a, ·) < 0
(ii) Learning rate Decay from 10≠4 to 10≠6 Decay from 10≠4 to 10≠6 Decay from 10≠4 to 10≠6

Jonathan Payne EMINNs April 23 14 / 23



Neural Network Q & A

I Q. What are the main di�erences to discrete time?
I Need to calculate derivatives rather than expectations (we use automatic di�erentiation)
I Need to choose where to sample (sample more where master equation error is large)

I Q. Why do we need shape constraints?
I Neural network can find “bad” approximate solutions,

(E.g. portfolio problem has approximate solution V ¥ 0 for high “.) More

I Option: penalize shape that correspond to known “bad” solutions.
I Option: train „ satisfying V (a, n, z, g) = „(a, n, z, g; ◊)(a ≠ a)1≠“ instead of training V
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Neural Network Q & A

I Q. What about slowing down the updating?
I For projection methods, we use “Howard improvement algorithm” to slow down the rate

of updating (fix policy rule for some iterations and just update V ).
I [Duarte, 2018] and [Gopalakrishna, 2021] suggest introducing a “false” time step but so

far we have not found this necessary (or found a way to implement at high scale).
I We use shape constraints as a replacement.

I Q. What about imposing symmetry and/or dimension reduction?
I [Han et al., 2021] and [Kahou et al., 2021] suggest feeding the distribution through a

preliminary neural network that reduces the dimension and imposes symmetry.
I We find we can solve the problem with and without this approach.
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Testing the Algorithm
I We test the model with fixed aggregate productivity (Aiyagari (1994)) Plots

Master equation loss MSE(NN, FD)
Finite Agent NN 3.135 ◊ 10≠5 4.758 ◊ 10≠5

Discrete State Space NN 9.303 ◊ 10≠6 6.591 ◊ 10≠5

I Solve version with stochastic aggregate productivity (Krusell-Smith (1998)):

Master equation training loss
Finite Agent NN 3.037 ◊ 10≠5

Discrete State Space NN 9.639 ◊ 10≠5

Projection NN 8.506 ◊ 10≠6

I Neural network solutions generate similar output to traditional methods.
I Example plots: comparison to [Fernández-Villaverde et al., 2018]
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Krusell-Smith: Sample Time Paths More Plots
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Krusell-Smith: Numerical Results More Plots
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Two Minor Extensions

1. Heterogeneous firm dynamics (in Gu-Lauriere-Merkel-Payne ’24):
I In KS-98, there is only one firm.
I We extend our method to models with many firms that each have non-tradable capital

and capital adjustment costs (a version of [Khan and Thomas, 2008])
I Technical di�erence is that we need to price a firm equity.

2. Population movements (in Gu-Lauriere-Merkel-Payne ’24):
I In the KS-98 model, there was one wage in the entire economy
I We extend our method to a “spatial” model where there are di�erent wages in di�erent

locations and agents can move (a version of [Bilal, 2021]).
I Technical di�erence is that the wage in location j only depends on the part of the

population distribution at location j.

Jonathan Payne EMINNs April 23 20 / 23



Two Major Extensions
1. Search and matching (SAM) models (in Payne-Rebei-Yang ’24):

I In KS-98, the mean of distribution entered the master equation through the prices.
I In search and matching models, the shape of the distribution is more important

Distribution Distribution impact on decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching probability
with other types

2. Macro finance models with complicated asset pricing (Gopalakrishna-Gu-Payne ’24):
I In the KS-98 model, we can express (r, w) as closed form functions of the state.
I For pricing long-term assets, the price process is only an implicit function of the state.
I We also have to handle portfolio choice, which deep learning has found hard.
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Conclusion

1. Deep learning in macroeconomics is a rapidly evolving field.

2. Much progress but still many challenges.

3. Some comments/questions for the computer science literature:
I Neural networks often seem “too flexible” for macroeconomic models. Other options?

I How should we rewrite economic models to make them more deep learning “friendly”?

I How should we dynamically choose weights in the loss function?

I How do we get the a better stability vs speed tradeo�?
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Thank You!
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