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Introduction
I Problem: Hard to solve macro models with heterogeneous agents + aggregate shocks.

I Infinite dimensional distribution becomes a state variable.
I Traditional techniques: perturbation, approximate laws of motion.

I Our goal: develop global solution technique for continuous time models:
I Step 1: derive finite dimensional approximation to the distribution

(finite agents, discrete state space, projections onto basis)
I Step 2: train neural networks to solve the resulting high dimensional PDEs.

I This talk: discuss practical lessons from three papers:
I Gu-Lauriere-Merkel-Payne (2024): solves Krusell-Smith style macro models.
I Payne-Rebei-Yang (2024): solves searching and maching models.
I Gopalakrishna-Gu-Payne (2024): solves macro-finance models with implicit prices.

Can now characterize global solutions to high dimensional continuous time GE models
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Environment (Continuous Time Krusell-Smith ’98)

I Continuous time, infinite horizon economy.

I Populated by I = [0, 1] households who consume goods, supply labor, and save wealth.

I Representative firm rents capital and labor to produce goods by Yt = e
ztK

–
t L

1≠–
t :

I Kt is capital hired, Lt is labor hired,
I zt is productivity (exogenous aggregate state variable): follows dzt = ÷(z̄ ≠ zt)dt + ‡dB

0
t

I B
0
t

is a common Brownian motion process; it generates filtration F0
t
.

I Competitive markets for goods (numeraire), capital (rental rate rt), labor (wage wt).
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Household Problem
I Household i has idiosyncratic state x

i
t = (ai

t, n
i
t), where a

i
t is wealth, n

i
t is labor.

I Given belief about price processes, household chooses consumption c = {c
i
t}tØ0:

max
{ci

t}tØ0
E0

5⁄ Œ

0

e
≠flt

u(ci
t)dt

6

s.t. da
i
t = (w̃tn

i
t + r̃ta

i
t ≠ c

i
t)dt =: µ

a
t dt, a

i
t Ø a

n
i
t œ {n1, n2}, switches at idiosyncratic Poisson rate ⁄(ni

t)

(1)

I u(c) = c
1≠“

/(1 ≠ “): utility function, fl: discount rate, a: borrowing limit.
I (r̃, w̃) = {r̃t, w̃t}tØ0 are agent beliefs about prices processes.

I Let Gt = L(ai
t|F0

t ) and gt be population distribution and density of a
i
t, for history F0

t

I Non degenerate since households get uninsurable idiosyncratic labor endowment shocks.
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Equilibrium
Definition: Given an initial density g0, an equilibrium for this economy consists of a
collection of F0

t -adapted stochastic process, {c
i
t, gt, zt, qt := [rt, wt] : t Ø 0, i œ I}, s.t.:

1. Given price process belief q̃, household consumption process, c
i
t, solves problem (1),

2. Given price process belief q̃, firm choose capital and labor optimally:

rt = e
ztˆKF (Kt, L) ≠ ”, wt = e

ztˆLF (Kt, L)

3. The price vector qt = [rt, wt] satisfies market clearing conditions:

Kt =
ÿ

jœ{1,2}

⁄
agt(a, nj)da, L =

ÿ

jœ{1,2}

⁄
njgt(a, nj)da

4. Agent beliefs about the price process are consistent: q̃ = q
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Equilibrium (Combining Equations For Prices)
Definition: Given an initial density g0, an equilibrium for this economy consists of a
collection of F0

t -adapted stochastic process, {c
i
t, gt, qt := [rt, wt], zt : t Ø 0, i œ I}, s.t.:

1. Given price process belief q̃, household consumption process, c
i
t, solves problem (1),

2. The price vector qt = [rt, wt] satisfies:

qt =
C

rt

wt

D

=
C
e

ztˆKF (Kt, L) ≠ ”

e
ztˆLF (Kt, L)

D

=: Q(zt, gt), where Kt =
ÿ

jœ{1,2}

⁄
agt(a, nj)da,

3. Agent beliefs about the price process are consistent: q̃ = q.

Having closed form expressions for prices in terms of (zt, gt) makes problem very tractable
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Recursive Representation of Equilibrium
I Aggregate states: (z, g), individual states: x = (a, n), household value fn: V (a, n, z, g).

I Given a belief dgt(x) = µ̃g(zt, gt)dt, household at x = (a, n) choose c to solve HJBE:

0 = max
c

Ó
≠ flV (a, n, z, g) + u(c) + ˆaV (a, n, z, g)(w(z, g)n + r(z, g)a ≠ c)

+⁄(n) (V (a, ň, z, g) ≠ V (a, n, z, g)) + ˆzV (a, n, z, g)µz(z) + 0.5 (‡z)2
ˆzzV (a, n, z, g)

+
⁄

X

ˆV

ˆg
(y, z, g)µ̃g(y, z, g)dy

Ô
, s.t. BC: ˆV

ˆa
|a=a Ø u

Õ(wn + ra)

where ň is complement of n.

I For optimal policy rule c
ú(a, n, z, g; µ̃

g) and zt, population density, g, evolves by KFE:

dgt(a, n) = [≠ˆa[(w(z, g)n + r(z, g)a ≠ c
ú)gt(a, n)] ≠ ⁄(n)gt(a, n) + ⁄(ň)gt(a, ň)]

¸ ˚˙ ˝
=:µg(at,nt,zt,gt;µ̃g)

dt

I In equilibrium µ̃
g = µ

g.
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Recursive Representation of Equilibrium (Soft Borrowing Constraint)
I Aggregate states: (z, g), individual states: x = (a, n), household value fn: V (a, n, z, g).

I Given a belief dgt(x) = µ̃g(zt, gt)dt, household at x = (a, n) choose c to solve HJBE:

0 = max
c

Ó
≠ flV (a, n, z, g) + u(c)≠1atÆaÂ(at) + ˆaV (a, n, z, g)(w(z, g)n + r(z, g)a ≠ c)

+ ⁄(n) (V (a, ň, z, g) ≠ V (a, n, z, g)) + ˆzV (a, n, z, g)µz(z) + 0.5 (‡z)2
ˆzzV (a, n, z, g)

+
⁄

X

ˆV

ˆg
(y, z, g)µ̃g(y, z, g)dy

Ô
, s.t.

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠
BC: ˆV

ˆa
|a=a Ø u

Õ(·), Â(a) = ≠1
2Ÿ(a ≠ a)2

where ň is complement of n.

I For optimal policy rule c
ú(a, n, z, g; µ̃

g) and zt, population density, g, evolves by KFE:

dgt(a, n) = [≠ˆa[(w(z, g)n + r(z, g)a ≠ c
ú)gt(a, n)] ≠ ⁄(n)gt(a, n) + ⁄(ň)gt(a, ň)]

¸ ˚˙ ˝
=:µg(cú

t ,at,nt,zt,gt;µ̃g)

dt

I In equilibrium µ̃
g = µ

g.
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“Master Equation” Representation of Equilibrium
I “Master equation” substitutes KFE, market clearing & belief consistency into HJBE.

I Equilibrium value function V (a, n, z, g) characterized by one PDE (if it exists):

0 = ≠ flV (a, n, z, g) + u(cú(a, n, z, g)) + 1atÆaÂ(at)
+ ˆaV (a, n, z, g)(w(z, g)n + r(z, g)a ≠ c

ú(a, n, z, g))
+ ⁄(x) (V (a, ň, z, g) ≠ V (a, n, z, g)) + ˆzV (a, n, z, g)µz(z) + 0.5 (‡z)2

ˆzzV (a, n, z, g)

+
⁄

X

ˆV

ˆg
(y, z, g)µg(cú(y, z, g), y, z, g)dy =: LV

where the optimal control c
ú is characterised by: u

Õ(cú(a, n, z, g)) = ˆaV (a, n, z, g).

I Theory: studies whether this master equation exists; e.g. [Cardaliaguet et al., 2015]

I Our paper: look for a “global” finite, but high, dimensional approximation to V
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Numerical Approximation Outline

I Goal: characterize approximate solution to Master equation numerically

I Problem: Master equation contains an infinite dimensional derivative.

I Solution: three main ingredients:
1. High but finite dimensional approximation to distribution and Master equation:

(i). Replace continuum of agents by a finite population of agents, or
(ii). Discretize the wealth variable, or
(ii). Project distribution onto a finite dimensional set of basis functions bi(x)

(e.g. eigenfunctions, Chebyshev polynomials, neural network, . . . ).

2. Parameterize V by neural network, and

3. Train the parameters to minimize the (approximate) master equation residual.
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Ingredient 1: Finite Dimensional “Distribution” Approximation

Finite Population Discrete State Projection

Dist. approx.
(params Ï̂t)

Agent states
Ï̂t = {(ai

t, n
i
t)}iÆN

Masses on gridqN
i=1

Ï̂i,t”(ai,ni)

Basis coe�cientsqN
i=0

Ï̂i,tbi(a; n)

KFE approx.
(µÏ̂)

Evolution of other
agents’ states

Evolution of mass
between grid points
(e.g. finite di�.)

Evolution of projec-
tion coe�cients
(least squares)

Dimension (N) ¥ 50 ¥ 200 ¥ 5

Kt =
qN

i a
i
t

q
j

qN
i=1

a
i
Ï̂i,t

q
j

s
a

q
i Ï̂i,tbi(a; n)da

Projections more easily capture shape but have complicated KFE approximation
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Ingredient 2: Approximate V by Neural Network
I Let ! = (a, n, z, Ï̂). We approximate surplus V (!) by neural network with form:

h(1) = „
(1)(W (1)! + b(1)) . . . Hidden layer 1

h(2) = „
(2)(W (2)h(1) + b(2)) . . . Hidden layer 2

...
h(H) = „

(H)(W (H)h(H≠1) + b(H)) . . . Hidden layer H
S = ‡(h(H)) . . . Surplus

I Terminology: a fully connected feed forward NN (finite agent params in blue):
I H: is the number of hidden layers, (H = 5)
I Length of vector h(i): number of neurons in hidden layer i, (Length = 64)
I „

(i): is the activation function for hidden layer i, („i = tanh)
I ‡: is the activation function for the final layer, (soft-plus)
I ⇥ = (W 1

, . . . W
(H)

, b
(1)

, . . . , b
(H)) are the parameters,

I Discrete state, projection more complicated NN [Sirignano and Spiliopoulos, 2018].
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Ingredient 3: Algorithm (“EMINN” or “Economic Deep Galerkin”)

1: Initialize the neural networks approximation for V̂ with parameters �.
2: while Loss > tolerance do
3: Sample M new training points: S = (Sm = (am

, n
m

, z
m

, (Ï̂m
i )iÆN ))M

m=1
.

4: Calculate the weighted average error across sample points, given current �:

E(S; �) = Ÿ
e 1
M

ÿ

mÆM

|L̂(am
, n

m
, z

m
, (Ï̂m

i )iÆN ; �)| + Ÿ
sEs(S; �), where

I L̂(am
, n

m
, z

m
, (Ï̂m

i )iÆN ; �) is error in Master equation L̂ at training point Sm

(where derivates in L̂ are calculated using automatic di�erentiation.)
I Es(S; �) is penalty for “wrong” shape (e.g. penalty for non-concavity of V )

5: Update parameters � by stochastic gradient descent: �new = �old ≠ –D�E(S; �)
6: end while

Jonathan Payne EMINNs April 23 10 / 58



The Deep Learning Conundrum

I Algorithm is straightforward to describe and code

I . . . but hard to implement successfully!

I I will discuss some features that we have found helpful.
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Sampling Approaches
I Sampling (a, n, z): draw from uniform distribution, then add draws where error high.

I Sampling the parameters in the distribution approximation (Ï̂i)iÆN :
I Moment sampling:

1. Draw samples for selected moments of the distribution (that are important for Q̂(z, Ï̂)).
2. Sample Ï̂ from a distribution that satisfies the moments drawn in the first step.

I Mixed steady state sampling:
1. Solve for the steady state for a collection of fixed aggregate states z.
2. Draw random mixtures of this collection of steady state distributions.

I Ergodic sampling:
1. Simulate economy using current value function approximation.
2. Use simulated distributions as training points.

Need to choose economically relevant subspace on which to sample.
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Implementation Details

Finite Population Discrete State Projection
Neural Network
(i) Structure Feed-forward Recurrent + embedding Recurrent + embedding
(ii) Initialization W (a, ·) = e≠a random random
Sampling
(i) (a, l) Active sampling

[a, a] ◊ {y1, y2}
Uniform sampling
[a, a] ◊ {y1, y2}

Uniform sampling
[a, a] ◊ {y1, y2}

(ii) (Ï̂i)iÆN Moment sampling: sam-
ple r, then random agents
positions that give r

Mixed steady-state sam-
pling then ergodic sam-
pling

Sample K and then or-
thogonal coe�cients from
ergodic sampling

(iii) z U [zmin, zmax] U [zmin, zmax] U [zmin, zmax]
Loss Function
(i) Constraints ˆaaV (a, ·), ˆzaV (a, ·) < 0 ˆaaV (a, ·), ˆzaV (a, ·) < 0 ˆaaV (a, ·), ˆzaV (a, ·) < 0
(ii) Learning rate Decay from 10≠4 to 10≠6 Decay from 10≠4 to 10≠6 Decay from 10≠4 to 10≠6
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Neural Network Q & A
I Q. What are the main di�erences to discrete time?

I Need to calculate derivatives rather than expectations (we use automatic di�erentiation)
I Need to choose where to sample (sample more where master equation error is large)

I Q. Could we use an alternative parametric approx. (e.g. Chebyshev polynomials)?
I Chebyshev projections require specially chosen grids to avoid oscillation problems
I Automatic derivatives can easily calculated for neural networks.
I E�ective non-linear optimizers have been developed for neural nets.

I Q. Why do we need shape constraints?
I Neural network can find “bad” approximate solutions,

(E.g. portfolio problem has approximate solution V ¥ 0 for high “.) More

I Option: penalize shape that correspond to known “bad” solutions.
I Option: train „ satisfying V (a, n, z, g) = „(a, n, z, g; ◊)(a ≠ a)1≠“ instead of training V
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Neural Network Q & A

I Q. What about slowing down the updating?
I For projection methods, we use “Howard improvement algorithm” to slow down the rate

of updating (fix policy rule for some iterations and just update V ).
I [Duarte, 2018] and [Gopalakrishna, 2021] suggest introducing a “false” time step but so

far we have not found this necessary (or found a way to implement at high scale).
I We use shape constraints as a replacement.

I Q. What about imposing symmetry and/or dimension reduction?
I [Han et al., 2021] and [Kahou et al., 2021] suggest feeding the distribution through a

preliminary neural network that reduces the dimension and imposes symmetry.
I We find we can solve the problem with and without this approach.
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Testing the Algorithm
I We test the model with fixed aggregate productivity (Aiyagari (1994)) Plots

Master equation loss MSE(NN, FD)
Finite Agent NN 3.135 ◊ 10≠5 4.758 ◊ 10≠5

Discrete State Space NN 9.303 ◊ 10≠6 6.591 ◊ 10≠5

I Solve version with stochastic aggregate productivity (Krusell-Smith (1998)):

Master equation training loss
Finite Agent NN 3.037 ◊ 10≠5

Discrete State Space NN 9.639 ◊ 10≠5

Projection NN 8.506 ◊ 10≠6

I Neural network solutions generate similar output to traditional methods.
I Example plots: comparison to [Fernández-Villaverde et al., 2018]
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Krusell-Smith: Sample Time Paths More Plots
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Krusell-Smith: Numerical Results More Plots
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Two Extensions
1. Search and matching (SAM) models (Payne-Rebei-Yang ’24):

I In KS-98, the mean of distribution entered the master equation through the prices.
I In search and matching models, the shape of the distribution is more important

Distribution Distribution impact on decisions
HAM Asset wealth and income Via aggregate prices

SAM Type (productivity) of agents
in two sides of matching

Via matching probability
with other types

2. Macro finance models with complicated asset pricing (Gopalakrishna-Gu-Payne ’24):
I In the KS-98 model, we can express (r, w) as closed form functions of the state.
I For pricing long-term assets, the price process is only an implicit function of the state.
I We also have to handle portfolio choice, which deep learning has found hard.
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Shimer-Smith/Mortensen-Pissarides with Two-sided Heterogeneity
I Continuous time, infinite horizon environment.

I Workers x œ [0, 1] with exog. density g
w
t (x); Firms y œ [0, 1] with density g

f
t (y):

(We also solve model with and without firm free entry)
I Unmatched: unemployed workers get benefit b; vacant firms produce nothing.
I Matched: type x worker and type y firm produce output ztf(x, y).
I zt: follows two-state continuous time Markov Chain (can be generalized).

I Meet randomly at rate m(Ut, Vt), Ut is total unemployment, Vt is total vacancies.
(We also solve model with on-the-job search)

I Upon meeting, agents choose whether to match:
I Match surplus St(x, y) divided by generalized Nash bargaining: workers get fraction —.
I Match acceptance function is –t(x, y) = {St(x, y) > 0}. Matches dissolve rate ”(x, y).

I Equilibrium object: gt(x, y) mass function of matches (x, y).
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Recursive Equilibrium Part I: Unemployed Workers & KFE
I Idiosyncratic state = x, Aggregate states = (z, g(x, y)).

I Hamilton-Jacobi-Bellman equation for an unemployed worker’s value V
u(x, z, g):

flV
u(x, z, g) = b + m(z, g)

U(z, g)

⁄
–(x, ỹ, z, g)(V e(x, ỹ, z, g) ≠ V

u(x, z, g)) g
v(ỹ)

V(z, g)dỹ

+ ⁄zz̃(V u(x, z̃, g) ≠ V
u(x, z, g)) + DgV

u(x, z, g) · µ
g

I –t(x, ỹ, z, g) indicates match acceptance
I g

u

t
(x) and g

v

t
(y) are mass functions for unemployed workers and vacant firms.

I V
e(x, y, z, g) is employed worker’s value and DgV

u(x, z, g) is Frechet derivative w.r.t g.

I Other Hamilton-Jacobi-Bellman equations are similar. More

I Kolmogorov forward equation (KFE):
dgt(x, y)

dt
:= µ

g(x, y, z, g) = ≠”(x, y)g(x, y) + m(z, g)
U(z, g)V(z, g)–(x, y, z, g)gv(y)gu(x)
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Recursive Characterization For Equilibrium Surplus
I Surplus from match S(x, y, z, g) := V

p(x, y, z, g) ≠ V
v(y, z, g) + V

e(x, y) ≠ V
u(x, z, g).

I Characterize equilibrium with master equation for surplus:

flS(x, y, z, g) = zf(x, y) ≠ ”(x, y)S(x, y, z, g)

≠ (1 ≠ —)m(z, g)
V(z, g)

⁄
–(x̃, y, z, g)S(x̃, y, z, g) g

u(x̃)
U(z, g)dx̃

≠ b ≠ —
m(z, g)
U(z, g)

⁄
–(x, ỹ, z, g)S(x, ỹ, z, g) g

v(ỹ)
V(z, g)dỹ

+ ⁄zz̃(S(x, y, z̃, g) ≠ S(x, y, z, g)) + DgS(x, y, z, g) · µ
g(z, g)

I Kolmogorov forward equation (KFE):
dgt(x, y)

dt
:= µ

g(x, y, z, g) = ≠”(x, y)g(x, y) + m(z, g)
U(z, g)V(z, g)–(x, y, z, g)gv(y)gu(x)

I High-dim PDEs with distribution in state: hard to solve with conventional methods.
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Comparison to Other Heterogeneous Agent Search Models

I Lise-Robin ’17: sets — = 0 and has “free” vacancy creation so that:
(and Postal-Vinay style Bertrand competition for workers searching on-the-job)

–(x, y, z, g) = –(x, y, z), S(x, y, z, g) = S(x, y, z)

I Menzio-Shi ’11: one-sided heterogeneity, competitive search, and “free” firm entry so:

S(x, y, z, g) = S(x, y, z)

I We look for a solution for S and – in terms of the distribution g.
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Modification 1: Discrete State Approximation
I Approximate g(x, y) on finite types: x œ X = {x1, . . . , xnx}, y œ Y = {y1, . . . , yny }.

I Finite state approximation ∆ analytical (approximate) KFE: g ¥ {gij}iÆnx,jÆny

I Approximated master equation for surplus:

0 = LS
S(x, y, z, g) = ≠(fl + ”)S(x, y, z, g) + zf(x, y) ≠ b

≠ (1 ≠ —)m(z, g)
V(z, g)

1
nx

nxÿ

i=1

–(x̃i, y, z, g)S(x̃i, y, z, g) g
u(x̃i)

U(z, g)

≠ —
m(z, g)
U(z, g)

1
ny

nyÿ

j=1

–(x, ỹj , z, g)S(x, ỹj , z, g) g
v(ỹj)

V(z, g)

+ ⁄zz̃(S(x, y, z̃, g) ≠ S(x, y, z, g)) +
nxÿ

i=1

nyÿ

j=1

ˆgij S(x, y, z, {gij}i,j)µg(x̃i, ỹj , z, g)
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Modification 2: Approximate Discrete Choice

I In the original model,

–(x, y, z, g) = {S(x, y, z, g) > 0}

I Discrete choice – ∆ discontinuity of S(x, y, z, g) at some g.

I To ensure master equation well defined & NN algorithm works, we approximate with

–(x, y, z, g) = 1
1 + e≠›S(x,y,z,g)

I Interpretation: logit choice model with utility shocks ≥ extreme value distribution.
(› æ Œ ∆ discrete choice –.)
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Feature 3: With and Without Free Entry

I No entry: V(z, g)/U(z, g) from exog. population distributions and matches.

I With free entry, depends upon the surplus function:

V(z, g)
U(z, g) = m

≠1

Q

a flc
s s

–(x̃, ỹ, z, g) gu(x̃)

U(z,g)
(1 ≠ —)S(x̃, ỹ, z, g)dx̃dỹ

R

b
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Methodology Q & A

I Q. How do we choose where to sample? Use mixed steady state sampling.
I We start by drawing distributions near steady states for di�erent fixed z.
I Can move to ergodic sampling once error is small.

I Q. What about dimension reduction?
I For competitive markets, Krusell-Smith ’98 suggest approximating distribution by mean.
I We exploited a similar idea when sampling to train a NN to solve Krusell-Smith ’98
I For random search, not clear what moment enables approximation of:

⁄
–(x̃, y, z, g)S(x̃, y, z, g) g

u(x̃)
U(z, g)dx̃, and

⁄
–(x, ỹ, z, g)S(x, ỹ, z, g) g

v(ỹ)
V(z, g)dỹ

I This is why moment sampling is not e�ective and we need other techniques.
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Methodology Q & A

I Q. How can we stabilize the algorithm?
I Most di�cult when ‚S(x, y, z, g;⇥) has sharp curvature. We use “homotopy”:

I Step 1: train NN for parameters that give low curvature in ‚S1

I Step 2: change parameters closer and retrain NN starting from previous ‚S2 = ‚S1

I Step 3+: keep changing parameters and retraining until at desired parameters.
I Alternative is to introduce false time derivative (e.g. Ahn et al-18, Duarte-18, Gop.-23)

I Q. What do we mean when we say this is a global solution?
I Algorithm gives a solution across the discretized state space (x, y, z, {gij}iÆnx,jÆny ),
I . . . which is a 3 + nx ◊ ny dimensional state space.
I Not a perturbation in z or g (e.g. Bilal ’23).
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Calibration
Frequency: annual.

Parameter Interpretation Value Target/Source

fl Discount rate 0.05 Kaplan, Moll, Violante ’18

” Job destruction rate 0.2 BLS job tenure 5 years

› Extreme value distribution for – choice 2.0

f(x, y) Production function for match (x, y) 0.6 + 0.4
!Ô

x +
Ô

y
"2

Hagedorn et al ’17

— Surplus division factor 0.72 Shimer ’05

z, z̃ TFP shocks 1 ± 0.015 Lise Robin ’17

⁄z , ⁄z̃ Poisson transition probability 0.08 Shimer ’05

”, ”̃ Separation shocks 0.2 ± 0.02 Shimer ’05

⁄” , ⁄”̃ Poisson transition probability 0.08 Shimer ’05

m(U , V) Matching function ŸU‹V1≠‹
Lise Robin ’17

‹ Elasticity parameter for meeting function 0.5 Lise-Robin ’17

Ÿ Scale parameter for meeting function 5.4 Unemployment rate

b Worker unemployment benefit 0.5 Shimer ’05

nx Discretization of worker types 7

ny Discretization of firm types 8
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Numerical performance: Accuracy I Calibration

I Mean squared loss as a function of type in the master equations of S (at ergodic g).
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Numerical performance: Accuracy II Calibration

I Compare steady state solution without aggregate shocks to solution using
conventional methods.

Figure: Comparison with steady-state solution

Comparison for discrete –
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DeepSAM vs block recursivity: “depression” shock on g

Figure: Ergodic distribution and distribution after the “unequal” and “equal” “depression” shocks

Question: how recovery dynamics di�er under full solution (using DeepSAM) vs under
“block recursive” solution (where g does not a�ect decision)?



Q. How much does dependence of – on g matter?
I Consider two impulse responses:

(i) The change in unemployment when acceptance is always evaluated at the long-run
ergodic employment distribution but otherwise the distribution follows KFE:

dg
BR

t
(x, y)

dt
= ≠ ”(x, y, zt)gBR

t
(x, y)

+
mt(z, g

t
)

Ut(g
t
)Vt(g

t
)–(x, y, zt, g

ergodic)gu,BR

t
(x)gv,BR

t
(y)

(ii) The change in unemployment when the acceptance function reacts to the changing
employment distribution.

I We interpret the former as the dynamics without the “distribution feedback”.

I We define the contribution of g through “distribution feedback” dynamics by:

�t := |Ut ≠ U
BR
t |

|Ut ≠ U0|
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Unemployment rate IRF after “depression” shock on g

Column 1: “equal” shock; Column 2 “unequal” shock.



Unemployment rate IRF to expansionary TFP shocks

Figure: Comparison: full solution with DeepSAM vs. block-recursive solution à la Lise-Robin

Note: we recalibrate the model to match the unemployment rate at steady state when we
adopt the Lise-Robin assumption with — = 0.



Worker Bargaining Power Influences Assortative Matching

I Sorting at the ergodic distribution for di�erent worker bargaining power —.
Left to right — = 0 (Lise-Robin ’17), 0.5, 0.72 (benchmark), 1

I Solved with on-the-job search to compare with Lise-Robin ’17.
Additional parameter calibration is employed worker search intensity: „ = 0.2.
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Sorting Over Business Cycles

I Study how “mismatch” changes over the business cycle.
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Sorting Over Business Cycles

I Countercyclicality of sorting depends on bargaining power.

Left to right — = 0 (Lise-Robin ’17), 0.72 (benchmark), 1.
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Environment
I Continuous time. One good produced by technology yt = e

ztkt, where:
I Aggregate productivity follows dzt = ’(z̄ ≠ zt)dt + ‡zdWt

I Capital stock follows dkt = („(ÿt)kt ≠ ”kt)dt, where ÿt is the investment rate.

I Finite collection of price taking households (i Æ I ≠ 1): (see [Gu et al., 2023])
I Idiosyncratic death shocks at ⁄h; new agent gets 1 ≠ · fraction of dying agent’s wealth.
I Flow utility u(ci,t) = c

1≠“

i,t
/(1 ≠ “) and e�ective discount rate flh := fl + ⁄h

I Penalty on holding capital: �h,t(ki,t, ai,t), ø in capital ki,t and ¿ in wealth ai,t.

I Financial “expert” with fle > flh, Epstein-Zin preferences, and no equity raising. More

I Competitive markets for goods, risk-free bonds (at rt), & capital (with price qt).

dqt

qt
= µq,tdt + ‡q,tdWt, dRk,t := e

zt ≠ ÿtkt

qtkt
+ d(qtkt)

qtkt
=: rk,tdt + ‡q,tdWt
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Optimization and Equilibrium
I Given belief about price processes (r̂, q̂), household i with wealth ai,t = bi,t + qtki,t:

max
ci,ki,ÿi

;
E0

5⁄ Œ

0

e
≠flit (u(ci,t) ≠ �t(ki,t, ai,t)) dt

6<

s.t. dai,t = (ai,t ≠ ki,t)r̂i,tdt + ki,tdR̂k,t(ÿt) ≠ ci,tdt + ·⁄Atdt

=: µaiai,tdt + ‡a,iai,tdWt

I Expert problem similar but without � and with Epstein-Zin preferences More

I Equilibrium:
1. Given r̂, q̂, households and expert optimize.
2. Prices (qt, rt) solves market clearing:

(i) Goods market
q

i
ci,t +

q
i
�(ÿi,t)ki,t = yt,

(ii) Capital market
q

i
ki,t = Kt and (iii) Bond market

q
i
bi,t = 0.

3. Agent beliefs are consistent with equilibrium (r̂, q̂) = (r, q).



Recursive Characterization of Equilibrium: (in Wealth Levels)
I Individual state = ai, Aggregate states = (z, K, {aj}j ”=i) = (·).

I Given belief about evolution of other agents, (µ̂aj (·), ‡̂aj (·)), household i solves:

flVi(ai, ·) = max
ci,ki,ÿi

Ó
u(ci) ≠ �(ki, ai, ·) + ˆVi

ˆai
µai(ai, ci, ki, ÿ, ·) + ˆVi

ˆz
µz + ˆVi

ˆK
µ̂K(·)

+ 1
2

ˆ
2
Vi

ˆa
2

i

‡
2

ai
(ki, ·) + 1

2
ˆ

2
Vi

ˆz2
‡

2

z + ˆ
2
Vi

ˆaiˆz
‡ai(ki, ·)‡z

+
ÿ

j ”=i

ˆ
2
Vi

ˆajˆz
‡̂aj (·)‡z + 1

2
ÿ

j ”=i,jÕ ”=i

ˆ
2
Vi

ˆajˆajÕ
‡̂aj (·)‡̂aÕ

j
(·)

Ô

I Expert HJBE is similar but without �i(ki, ai, ·) and with Epstein-Zin terms.

I In equilibrium, beliefs are consistent: (µ̂aj (·), ‡̂aj (·)) = (µaj (·), ‡aj (·)).
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Recursive Characterization of Equilibrium: (in Wealth Shares)

I Change variable to marginal value of wealth: ›i := ˆVi/ˆai.

I Change distribution to wealth shares (z, K, {÷i}1ÆiÆI), where ÷i := ai/A is agent i’s
share.

I Once equilibrium is imposed, we know ›i is a function w.r.t. (z, K, {÷i}1ÆiÆI)

. . . so we can write µ›i and ‡›i in terms of derivatives of (z, K, {÷i}1ÆiÆI).

I We group the resulting equilibrium equations into three blocks.
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Block 1: Optimization

I Given price processes (r, rk, q, µq, ‡q), household optimization implies:

Euler equation: flh›h = r›h + ˆ›h

ˆz
µz + ˆ›i

ˆK
µK + 1

2
ˆ

2
›h

ˆz2
‡

2

z +
ÿ

j

ˆ›h

ˆ÷j
÷jµ÷j ,t

+
ÿ

j

ˆ
2
›h

ˆzˆ÷j
÷j‡÷j ,t‡z + 1

2
ÿ

j,jÕ

ˆ
2
›

2

h

ˆ÷jˆ÷jÕ
÷j÷jÕ‡÷j ,t‡÷jÕ ,t

Consumption FOC: ›h = u
Õ(ch)

Portfolio FOC: ›h(rk ≠ r) = ≠
1

ˆ›h

ˆz
‡z +

ÿ

j

ˆ›h

ˆ÷j
‡j,÷

2
‡q ≠ ˆ�h

ˆki

I Expert optimization is similar but adjusted for Epstein-Zin More
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Block 2: Distribution Evolution

I Given prices (r, rk, q, µq, ‡q) and (c, ›, k), the law of motion of wealth shares is:

d÷j,t

÷j,t
= µ÷j ,tdt + ‡÷j ,tdWt, where:

µ÷j ,t = rt + ◊j,t(rk,t ≠ rt) ≠ Êj,t ≠ µq,t ≠ µK,t + (1 ≠ ◊j,t)‡2

q,t + ⁄·

A
1

I≠1
(1 ≠ ÷j,t)
÷j,t

≠ 1
B

‡÷j ,t = ≠ (1 ≠ ◊j,t)‡q,t

where
I ◊k,t := kj,t/(÷j,tqtKt) is agent j’s share of wealth in capital,
I Êj,t := cj,t/(÷j,tqtKt) is agent j’s consumption-to-wealth ratio.
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Block 3: Equilibrium Consistency
I Clearing conditions pin down the prices:

ÿ

i

ci,t + �(ÿt)Kt = yt

ÿ

i

(1 ≠ ◊i,t)ai,t = 0
ÿ

i

◊i,tai,t = qtKt

I But q process is implicit so must impose consistency conditions on q to close model:

qµq,t =
ÿ

j

ˆq

ˆ÷j
÷jµ÷j ,t + ˆq

ˆz
µz,t + ˆq

ˆK
µK,t +

ÿ

j

ˆ
2
›i

ˆzˆ÷j
÷j‡÷j ,t‡z

+ 1
2

ÿ

j,jÕ

ˆ
2
q

ˆ÷jˆ÷jÕ
÷j÷jÕ‡÷j ,t‡÷jÕ ,t + 1

2
ˆ

2
q

ˆz2
‡

2

z

q‡q,t =
ÿ

j

ˆq

ˆ÷j
÷j‡÷j ,t + ˆq

ˆz
‡z,t

Jonathan Payne EMINNs April 23 45 / 58



Comparison to Models With Existing Solution Techniques

Models Non-Trivial Blocks Method
1 2 3

Representative Agent
(à la [Lucas, 1978])

simple NA simple Finite di�erence

Heterogeneous Agents
(à la [Krusell and Smith, 1998])

3 3 simple [Gu et al., 2023]

Long-lived assets
(à la [Brunnermeier and Sannikov, 2014])

closed-form low-dim 3 [Gopalakrishna, 2021]

HA + Long-lived assets 3 3 3 This paper
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The Big Decisions

I Q. Which equilibrium functions should we approximate with neural networks?

I Q. What should be in the loss functions?
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Neural Network Approximation
I Let X := (z, K, (÷i)iÆI) denote the state vector in the economy

I Approximate ({Êj := cj/aj}jœ{h,e}, ‡q) by neural nets with params ({�Êj }jœh,e, �q):

Ê̂j(X; �Êj ), ’j œ {h, e}, ‡̂q(X; �q) Neural Network Structure

I At state X, the error (or “loss”) in the Neural network approximations is given by:
(with ›̂j = u

Õ
j(Ê̂j(X)) for j œ {h, e} and ‡̂q = ‡̂q(X))

LÊj (X) = (r ≠ flj)›̂i + ˆ›̂i

ˆz
µz + ˆ›̂i

ˆK
(„((„Õ)≠1(q≠1))Kt ≠ ”Kt) +

ÿ

j

ˆ›̂i

ˆ÷j
÷jµ÷j ,t

+
ÿ

j

ˆ
2
›̂i

ˆzˆ÷j
÷j‡÷j ,t‡z + 1

2
ˆ

2
›̂i

ˆz2
‡

2

z + 1
2

ÿ

j,jÕ

ˆ
2
›̂

2

i

ˆ÷jˆ÷jÕ
÷j÷jÕ‡÷j ,t‡÷jÕ ,t, j œ {h, e}

L‡(X) = ≠ q‡̂q +
ÿ

j

ˆq

ˆ÷j
÷j‡÷j + ˆq

ˆz
‡z
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Algorithm (“EMINN” or “Economic Deep Galerkin”)

1: Initialize neural networks {Ê̂h, Ê̂e, ‡̂q} with parameters {�Êh , �Êe , �q}.
2: while Loss > tolerance do
3: Sample N new training points:

1
Xn =

1
z

n
, K

n
, (÷i)n

iÆI

22N

n=1
.

4: Calculate equilibrium at each training point Xn given current {Ê̂h, Ê̂e, ‡̂q}:
(a) Compute (Ê̂n

i )iÆI using current approximation {Ê̂h, Ê̂e} evaluated at Xn.
(b) Compute q

n and (›n
i )iÆI using (Ê̂n

i )iÆI .
(c) Solve for (✓n

,‡‡‡
n
÷÷÷ , s

n) the current approximations for {Ê̂h, Ê̂e, ‡̂q}.
(d) Compute µ÷, µq, r.

4: Construct loss as: L̂(X) = 1

N

q
n |L̂Êh(Xn)| + 1

N

q
n |L̂Êe(Xn)| + 1

N

q
n |L̂‡(Xn)|

5: Update {�Êh , �Êe , �q} using ADAM optimizer (stochastic gradient descent to ¿ L̂).
6: end while
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Approach Q & A

I Naive approach: approx. (V, c, ◊, r, q) by NN, then put FOC and clearing in loss

. . . This is slow/di�cult for the neural network to learn so we make simplifications.

I Q. Why do we approximate Ê = c/a not V?
I Better to approx. › = ˆaV than V so we can easily impose V concavity.
I Better to approx. Ê = c/a, then reconstruct ›h = (Ê÷qK)≠“ so NN “less non-linear”
I Easier to fit neural networks to bounded functions and impose shape explicitly.

I Q. Do we also need to fit a neural network to the portfolio constraint � (or to ◊)?
I No, if � is linear or quadratic since portfolio choice can be solved explicitly in ›

I Yes, otherwise.
I Fit neural networks to min. variables needed to make equilibrium calculation step simple.
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Approach Q & A

I Q. Why do we work in wealth share space?
I Well known deep learning di�culty—adding market clearing loss functions creates

instability.
I So, we need to impose market clearing in the sampling.
I If we sample in the “a” space, then imposing market clearing means restricting a to an

I ≠ 1 dimensional hyperplane that depends upon equilibrium prices. E.g.
q

i
ai = qK

I Instead, we solve for the equilibrium Ê as a function of (z, K, (÷i)iÆI), which means
capital market clearing is satisfied by

q
i
÷i = 1.

I Better to move market clearing conditions out of the loss function.
I Similar in spirit to the discrete time approach in [Azinovic and Žemlička, 2023]
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Approach Q & A
I Q. What type of neural network?

I We use fully-connected feed-forward type with 4 hidden layers and 32 neurons per layer.
I We train using an ADAM optimizer with a learning rate of 0.0005 for 1400 iterations.

I Q. How do we sample?
I Start with uniform sampling with shifted moments of the distribution.
I Can then move ergodic sampling, if required.

I Q. Does the approach work on standard models?
I Test it on [Lucas, 1978], [Basak and Cuoco, 1998], [Brunnermeier and Sannikov, 2014].
I Di�erence to finite di�erence solution approximately 1e-4.

I Q. How long does it take?
I 10 agents: < 10 minutes on laptop.
I 25 agents: < 20 minutes on laptop.
I 50 agents: ¥ 1 hour on cluster
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Q. How Does Asset Pricing Impact Inequality?

I Di�erence between the drift of the wealth share of any two households i and j is:

µ÷j ,t ≠ µ÷i,t = (◊j,t ≠ ◊i,t)(rk,t ≠ rt ≠ ‡
2

q,t) ≠ (Êj ≠ Êi) + ·⁄

I ≠ 1

A
1

÷j,t
≠ 1

÷i,t

B

1. Participation constraint: means low wealth agents hold less capital and earn less risk
premium. E.g. for log utility and quadratic participation cost (Âi,t = 0.5Â̄‡

2
◊

2
i,t

/÷i,t):

◊i,t = ki,t

ai,t

¥ rk,t ≠ rf,t

‡
2
q,t

+ Â̄‡2/÷i,t

, i œ {1, . . . , I ≠ 1}

2. Di�erential consumption: low wealth agents save more to escape participation constraint.

3. Redistribution: through death (and wealth taxes)
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Equilibrium For Di�erent Participation Constraints
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Figure: Equal household wealth distribution. fle = 0.04, flh = 0.03, µ = 0.02, ‡ = 0.05.



Q. How Does Inequality Impact Asset Pricing?

I For log utility and quadratic participation cost, aggregate capital demand is:

I≠1ÿ

i=1

◊i,t÷i,tAt + ◊e,t÷e,tAt =
A

I≠1ÿ

i=1

÷
2

i,t

Â̄‡2 + ‡
2
q,t÷i

+ ÷I,t

‡
2
q,t

B

(rk,t ≠ rf,t)qtKt

I The capital market participation breaks aggregation in household sector.

I More unequal distribution

∆ households purchase more capital when expert wealth drops.

∆ wealth distribution influences whether household or expects act as “bu�er” in
recessions.
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Equilibrium at Di�erent Wealth Distributions
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Conclusion

I This talk: showed how we use neural networks to solve continuous time,
heterogeneous agent models with search and matching frictions or long-term assets.

I Practical Lessons: for continuous time deep learning

1. Working out the correct sampling approach is very important.

2. Neural networks have di�culty dealing with inequality constraints.

3. Enforcing shape constraints and/or rescaling functions is important.

4. Need tighter tolerance than finite di�erence.
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Thank You!
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