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Abstract

There is intense competition in the provision of new private currencies and

settlement ledgers. We study which providers will prevail and how effectively

the emergent market structure will enhance credit contract enforcement. If

the economy has a sufficiently dominant tech platform, then the platform will

“back” the settlement ledger, which enables it to incentivize lenders to coordi-

nate on enforcing each others’ contracts. It does so by threatening exclusion

from both the payment and trading systems. Without a dominant tech plat-

form, a private common ledger does not improve contract enforcement. Ledger

provision tends to be a natural monopoly.

Keywords: Ledgers, currency competition, private currencies, “Industrial

Organization of Money”, smart contracts, platforms, Fintech.

∗Brunnermeier: Princeton, Department of Economics, Bendheim Center for Finance,
markus@princeton.edu. Payne: Princeton, Department of Economics, Bendheim Center for Fi-
nance, jepayne@princeton.edu. We are grateful to our discussant Charlie Kahn. We thank Mark
Walker for outstanding research assistance. We are also grateful for comments from Joseph Abadi,
Viral Acharya, Mark Aguiar, Jonathan Chui, Mikhail Golosov, Hanna Halaburda, Charlie Kahn,
Nobu Kiyotaki, Thorsten V. Koeppl, Ye Li, Abdoulaye Ndiaye, Guillermo Ordoñez, Cecilia Parla-
tore, Laura Veldkamp, and Chaojun Wang.

1



1 Introduction

There are many attempts to introduce new currencies and settlement ledgers. Large
tech platforms have started to offer their own tokens, payment services, and set-
tlement systems (e.g. Alibaba, WeChat, Meta, Amazon). At the same time, large
supply chains are moving payments and contracting onto shared ledgers (e.g. Corn-
ing, Emerson, Hayward). Communities have developed decentralized ledgers with
automated contract enforcement (e.g. Ethereum, Solana). These changes raise im-
portant questions about how the provision of private settlement and currency ledgers
impact the macroeconomy. Which institutions will provide settlement ledgers in an
unregulated economy? Can new ledger providers enlarge the contracting space so that
new credit contracts are possible? Will consumers benefit from such arrangements or
will intermediaries gain market power? How should regulators respond? To address
these questions, we build a general equilibrium production model with private control
of settlement assets and ledgers.

We start with a three-period real model and then extend it to an infinite horizon
monetary macro-model. In our three-period real model, there are producers who issue
IOUs to purchase inputs in the initial period and then trade their output in one of
the later periods. The economy has two trading technologies: a non-intermediated
public marketplace and a private platform that is controlled by a profit maximizing
platform that charges markups. There are also two payment technologies for settling
trades: private “spot” exchanges and payment through a centralized ledger that can
record and execute contracts. This environment can be thought of as having a ledger
technology as in Kocherlakota (1998) but (i) without a benevolent planner organizing
the ledger and (ii) with an outside payment option so that agents need to be incen-
tivized to use the ledger. So instead of studying the planner problem, we study how
successfully large private intermediaries are able to exploit the ledger technology.

We show that integration between the settlement ledger and platform trading
technology is required to maximize contract enforcement. Having a common settle-
ment ledger in the economy only leads to IOU repayment if the platform forces agents
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to pay through ledger when using their trading technology. Otherwise, all agents use
spot trades and default. In other words, having a platform doesn’t lead to contract
enforcement unless it is connected to the ledger. Why? When producers trade before
contract settlement, then the platform needs access to the settlement technology to
be able to seize sales revenue and repay debtors. When producers trade after con-
tracts are settled, then the platform needs the contract information on the ledger to
threaten to exclude defaulting agents and incentivize repayment. Ultimately, a com-
mon settlement is only a powerful contracting technology if agents are incentivized
to use the ledger — it needs to be “backed” by its usefulness on the trading platform
in the economy.

The emergent market structure in an unregulated economy depends upon the
fraction of trade controlled by the platform. A dominant platform will bundle the
provision of a trading technology and a settlement ledger and use their market power
to extract the maximummarkup at which contract repayment in incentive compatible.
Without a dominant platform, no common settlement ledger is created in the economy
and no credit contracts are extended. Why? The platform faces the trade-off that
charging higher markups increases profits but also makes it harder for the platform
to back the settlement ledger because exclusion from platform trade is less costly
for the agents. This means the platform finds incentivizing contract repayment too
difficult unless they control a large fraction of trade. In this sense, there is a “natural”
monopoly in contract enforcement.

In Section 3 we extend our analysis to an infinite horizon macroeconomic model
where projects have flexible size, agents chose where to trade goods, agents need to
save resources through financial intermediaries, and payments are settled using finan-
cial assets (IOUs on the ledger or money). We use this dynamic model to study feed-
back in the payment and trading systems. When agents can only receive revenue in
financial assets recorded on the private ledger, then agents are locked into repayment.
When agents can also receive revenue using money, then there is always an equilib-
rium in which financial intermediaries secretly allow producers to secretly store their
sales revenue with them after defaulting on loans from other financial intermediaries.
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The ledger operating platform can choose to eliminate this equilibrium by threaten-
ing to punish financial intermediaries that do not cooperate on contract enforcement
by seizing their token holdings and excluding them from the ledger. Interestingly,
the platform markup also affects the equilibrium interest rate. When markups are
low more trades occur on the platform and more agents save in form of ledger IOUs
which increases the loan supply. By contrast, when markups are high agents tend to
hold cash until they want to consume, which limits loan supply and translates into a
higher equilibrium interest rate. The higher interest rate partially offsets the markup
disincentive to trade through the platform and so allows the platform to charge high
markups without significantly losing customers.

Finally, we conclude our analysis by contrasting two policy responses: (i) regu-
lating competition between multiple private platforms each providing their own —
possibly interoperable — trading and settlement technologies and (ii) the provision of
a public interoperable ledger. We show that competing private platforms that bun-
dle ledger and trading technologies will cooperate on contract enforcement so long
as the gap between their respective trading technologies is not too large and finan-
cial frictions do not prevent the less efficient platform from committing to pay the
more efficient platform. Otherwise, a dominant platform emerges that attracts more
trading and extracts higher rents. We show that introducing a public ledger resolves
contracting problems in the economy if the government forces platforms to adopt the
ledger but potentially incentivizes the platform to create a “black-market” with its
own private tokens if the government does not force adoption of the public ledger.
This is because previously the government was providing the unmonitored outside
cash option and the platform was providing the contract enforcement where as no the
platform is the one that can offer the hidden side-trading option.

Literature Review. Our paper is related to several branches the research, in-
cluding on the literature concerning the role of ledgers and settlement assets in orga-
nizing trading systems. Aiyagari and Wallace (1991) and Kocherlakota (1998) study
how a planner can increase the contracting space by updating a common ledger with
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trading histories. Freeman (1996b,a) studies how the choice of settlement asset cre-
ates or mitigates trading frictions in the currency market. Our model shares many
features with these papers. However, we consider an environment where a private,
profit-maximizing agent controls the ledger. This brings an industrial organization
perspective to the literature on ledgers and settlement assets. In Brunnermeier and
Payne (2023), we extend our model to study strategic information portability deci-
sions in a contested market setting.

Second, we relate to the literature on currency competition (e.g. Hayek (1976),
Kareken and Wallace (1981), Brunnermeier and Sannikov (2019)). Formally, our
dynamic model in section 3 expands on the two currency cash-in-advance model from
Svensson (1985) and endogenizes currency demand using search and trading frictions
in the tradition of the new monetarist literature (e.g. Lagos and Wright (2005), Lagos
et al. (2017)).

Third, we relate to the growing field of digital currencies. Instead of focusing on de-
centralized digital currencies such as cryptocurrencies (e.g. Fernández-Villaverde and
Sanches (2018), Benigno et al. (2019), Abadi and Brunnermeier (2018), Schilling and
Uhlig (2019), Cong et al. (2021)) or on central bank digital currency (e.g. Fernández-
Villaverde et al. (2020), Keister and Sanches (2019), Kahn et al. (2019)), we are part
of a less developed literature studying centralized digital currencies supplied by pri-
vate tech platforms (e.g. Chiu and Wong (2020), Cong et al. (2020), Ahnert et al.
(2022)). We argue that what makes “digital” currency special is its connection to a
digital ledger and the associated increased contracting space.

Fourth, we relate to the literature on endogenizing debt limits when future in-
come is difficult to pledge. In our model, the ledger operator can incentivize the
repayment of debt contracts by threatening to seize assets and exclude agents from
using their ledger. In this sense, the type of payment technology used determines the
collateralizability of future sales revenue relating to the emerging literature on “digital
collateral”, (e.g. Garber et al. (2021)). Having a centralized platform can resolve the
contracting issues across the supply chain presented in Bigio (2023). It also relates
to Kahn and van Oordt (2022), where money is programmable and thereby offers
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users a commitment technology that stores resources in an escrow account until the
payment is automatically executed.

The presence of cash as an alternative unmonitored payment technology in our
model potentially allows agents to circumvent contract enforcement though “side-
payments”, similar to in Jacklin (1987) and Farhi et al. (2009). Rishabh and Schäublin
(2021) shows the empirical counterpart. They document that after an Indian fintech
company disbursed loans “digitally collateralized” by future digital sales revenue,
borrowers’ non-cash revenue drops. In our paper, the ledger controller resolves this
enforcement difficulty by incentivizing financial intermediaries to report defaulters to
other intermediaries so that they can coordinate on enforcement. This is in contrast
to the literature, which has focused on incentivizing debtors directly.

We structure the paper in the following way. Section 2 solves the three period
version of the model with a monopoly ledger controller and exogenous platform de-
mand. Section 3 extends the analysis to an infinite horizon macroeconomic model
with endogenous agent trading decisions. Section 4 concludes.

2 Monopoly Ledger and Enforcement

In this section, we outline a three-period version of our model. We use this model
to highlight why integration between a trading platform and a common ledger is
necessary for enforcing uncollateralized contracts in the economy. Without a trading
platform forcing agents to use the ledger, agents undertake private side trades and
default on loans. Without access to a common ledger, the platform has neither the
enforcement power to take resources to enforce contracts nor the information to punish
defaulting agents with exclusion from trade. Without government intervention, the
emergent market structure is the platform controlling both the trading and ledger
technologies and extracting rents from the economy.
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2.1 Environment

Time lasts for three periods: t ∈ {0, 1, 2}, where t = 1 and t = 2 are interpreted as
the morning and evening of second period. There is an input good and a collection
of consumption goods. The economy contains two types of agents: input good pro-
ducers and consumption good producers.

Production and preferences: Agents have consumption needs at random times, which
mimics features of the life-cycle structure in the infinite horizon model. Input good
producers can supply input goods at t = 0 at linear disutility and get linear utility
from consumption in period t = 1. Consumption good producers can issue IOUs to
purchase 1 input goods at t = 0 and transform it into z > 1 output goods at t = 1
and can frictionlessly store goods between periods 1 and 2. With probability 1 − β
they get linear utility from consuming goods at t = 1 and with probability β they
get linear utility from consuming at t = 2. In both cases they do not get utility
from consuming the goods they produced on their own but instead only from goods
produced by other agents.

Trading and payment technologies: There are two trading technologies for connecting
agents in the economy, indexed by n ∈ {o, p}. Trading technology n = o is not
controlled by anyone and is referred to as the “open” public marketplace. Trading
technology n = p is controlled by a profit maximizing organization, which we refer to
as the private platform. Agents find trading opportunities randomly each period.
With probability 1− η they find an opportunity on the public marketplace and with
probability η they find an opportunity on the private platform.1 We endogenize η in
Section 3. The platform charges a markup µt at time t ∈ {1, 2} on the profit received
by sellers using their trading technology.2 We impose that all profits from markups

1In the two period model, it does not matter where agents trade at t = 0. However, in the
dynamic model, it will make a significant difference because agents can be locked into a trading
system.

2Because production has fixed size, it doesn’t matter whether the platform charges a markup on
revenue or profit. In this section, we impose a markup on profit for notational convenience.
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collected by the platform at t are redistributed lump sum to the agents trading at t
as dividends.

All trade are settled using goods (we defer the introduction of money and bills of
exchange in Section 3). However, there are two payment technologies in the economy
for settling goods trades, spot payments and ledger payments, indexed by m ∈ {s, l}.
Spot payments (s) are not recorded and are settled immediately. Ledger pay-

ments (l) are organized and recorded on a centralized ledger and settled at the end
of each period.

Assets, markets, timing, and frictions: There is one type of asset: loans written in
the form of IOUs by the output producers that promise R units of goods in period
t = 1 for each input good given in period t = 0. Asset and goods markets open
with the following timing. At t = 0, input producers sell input goods to output
producers in exchange for IOUs. All t = 0 trades use the ledger. At t = 1, (i)
output producers whose consumption needs realize early find trading opportunities
on either the public marketplace or the platform, choose a payment technology, and
exchange goods one-for-one, and (ii) input producers, who hold IOUs, return to the
output producers to claim IOUs, and (iii) settlement (or default) occurs. Similarly,
at t = 2, the remaining output producers find trading opportunities on either the
public marketplace or platform, choose a payment technology, and exchange goods
one-for-one.

The economy has information and enforcement frictions. Agents have publicly
verifiable identities and so can be located in at times 1 and 2. However, agents’
actions are not publicly observable and contract enforcement is imperfect. If an
agent defaults on an IOU, then the holder cannot recover any revenue through the
legal system and the borrower leaves with ψz, where ψ ≤ 1. We interpret (1−ψ)z as
the deadweight cost of default and endogenize it as a production distortion in Section
3. We assume that ψz ≥ z − 1 so that the agents always want to default at the
competitive (or greater) interest rate of 1. The ledger automatically uses revenue
from ledger trades to settle contracts within the period but revenue from spot trades
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cannot be used.

2.2 Market Equilibrium

We now characterize the equilibrium for different potential exclusions from the trad-
ing and payment technologies.

Input producer problem: Input producers choose whether to provide input goods in
exchange for IOUs. Let φ denote the probability that an output producer repays a
loan. The IOU interest rate at which input producers are indifferent about providing
1 input goods in exchange for IOUs must compensate the input producers for default:

1 = φR ⇒ R = 1/φ (2.1)

so long as φ > 0. Feasibility requires that R ≤ z. So, no loans are made if 1/φ > z.

Output producer problem: The output good producer chooses input good purchases,
whether or not to default on the IOU, and a payment technology for trade. Let ιs be
an indicator for whether the platform allows agents to use spot trade. Let ιd be an
indicator for whether the platform allows agents to trade after having defaulted on
the IOU.

If the output good producer trades at t = 1 (before contract settlement), then
contracts are only enforced if they pay using the ledger and so the payment is taken
before they can default. In this case, the 1 − η fraction of agents finding trading
opportunities on the public marketplace choose spot and default while the η fraction
of agents trading on the platform can only default if the platform chooses ιs = 1 and
allows them to use spot trading. So the fraction of defaults on t = 1 trades is:

1− η + ηιs.

If the producer trades at t = 2 (after contract settlement), then proceeds from
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trade cannot be used to redeem the contract at t = 1 because trade will not take
place until t = 2. Instead, it is the threat of exclusion from future trade that might
incentivise repayment. Then, the agent repays the loan iff:

(η(1− µ2) + 1− η)(z −R) ≥ (η(1− µ2)ιd + (1− η))ψz (2.2)

where the LHS is the benefit from repaying the loan and having access to all markets
while the RHS is the benefit from defaulting but potentially only being able to trade
on public market market.

At time t = 0, the output producers start projects so long as the profit from the
project is positive.

Definition 1. Given a markup policy (µ1, µ2), a competitive equilibrium is a col-
lection of an interest rate, r, and a default decision satisfying equations (2.1) and
(2.2).

2.3 Market Arrangements and Contract Enforcement

We now contrast different market structure arrangements: independent platforms and
ledgers, a monopoly provider of a bundled platform and ledger, and multiple ledger
providers.

Independent platform and ledger: Theorem 1 shows that, if the ledger and trading
technology are provided by separate institutions, then all output good producers
default unless the institutions cooperate on enforcement.

Theorem 1. If the common settlement ledger and trading technology are operated
independently by separate institutions and one of the institutions does not cooperate
on exclusion, then all output good producers default and there is no production in the
economy.

Proof. See Appendix A.
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Why is cooperation between the ledger operator and the platform required to en-
sure contracts enforcement? If the ledger automatically enforces contracts but the
platform allows agents to undertake spot payments regardless of whether they have
defaulted, then all agents use spot trades and default. If the platform attempts to
ensure default, then it needs cooperation from the ledger. For agents that trade be-
fore contract settlement, the platform needs to force agents to use the ledger so that
revenue can be seized to fulfil the contract. But, if the ledger operator does not allow
the ledger to be used for payment on the platform, then the platform cannot do this.
For agents that trade after contract settlement, the platform needs to exclude default-
ing agents. But, if the ledger does not share contract information, then the platform
cannot do this. In this sense, regardless of the timing of trade and settlement, the
platform needs access to the ledger to be able incentivise contract enforcement.

Platform providing the common settlement ledger: Theorem 2 considers the behaviour
of a platform that provides both a trading technology and a common settlement ledger
for the economy. In this case, the platform chooses the markups the markups (µ1, µ2)
at t = 1, 2 and has full control both exclusion decisions (ιs, ιd). It chooses these
variables to solve problem (2.3) below:

max
ιs,ιd,µ1,µ2

{
η
(
µ1(1− β)π1(D(1)) + µ2β(1− (1− ιd)D(2))π2(D(2))

)}
(2.3)

where D(1) is the default outcome by output producers trading on the platform at
t = 1 under ιs and D(2) is the default decision by output producers trading on the
platform at t = 2, which satisfies the IC constraint (2.2) and so implicitly depends
upon ιd and µ2. The function π1(D(1)) = (1 − D(1))(z − R) + D(1)ψz is the profit
early traders make under spot payment exclusion decision ιs, the function π2(D(2)) =
(1−D(2))(z −R) +D(2)ψz is the profit late traders make when they choose default,
the probability of repayment is φ = (1− β)η(1−D(1)) + β(1−D(2)), and R = 1/φ.

Theorem 2. Suppose that the trading platform controls the common settlement ledger
for the economy as well as the trading technology. The platform always sets µ1 = 1.

11



For sufficiently large η, the platform incentivizes contract enforcement by maximising
exclusion ιs = ιd = 0 and charging the maximum markup that is incentive compatible
with contract enforcement at t = 2:

µ̄2 = 1−
(

1− η
η

)(
ψz

z −R
− 1

)
(2.4)

For sufficiently low η, the platform does not set up a ledger and there is no trade in
the economy.

Proof. See Appendix A.

Theorem 2 shows that the dominance of the trading platform, as measured by η,
characterizes whether the economy has a problem with monopoly “rent” extraction
or a problem with credit “fragility”. The intuition for this is the following. The plat-
form derives profit from charging markups on trade. However, it also incentivizes late
consumer repayment by threatening to exclude them from trade. This means that in-
creasing the markup to increase profits will also decrease the severity of the exclusion
punishment. Together, these forces mean that the maximum markup the platform
can charge and maintain contract enforcement is given by (2.4). When η is high, the
platform can maintain a positive markup while still incentivising no-default and so is
willing to set up the ledger. However, when η is low, the platform would have to offer
a negative markup (i.e. a subsidy) to make exclusion from trade sufficiently costly to
incentivize no-default. In this case, it prefers to not set up the common ledger.

Competing ledgers: Finally, we consider whether the platform is going to provide the
ledger in an unregulated equilibrium. Corollary shows that if an independent ledger
operator competes with a platform bundling a ledger, then the platform will ensure
that it’s ledger is dominant. This is because any ledger in our economy is backed by
platform trade and so the platform can choose which ledger is valued in the economy.
In this sense, the platform is the “natural” provider of the common ledger for the
economy.
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Corollary 1. Suppose that a platform provides a ledger and an independent operator
provides an alternative ledger. Then in equilibrium, the platform takes all the profit.

Proof. This follows immediately from the previous results. The platform can exclude
the alternative ledger from use on its platform, in which case the alternative ledger
is never used.

We close this section by summarizing the key lessons from our stylised three-period
model that we explore further in subsequent sections.

(i) Ledgers are only useful if they are “backed”: The ledger record keeping
technology is potentially very powerful in the economy but only if agents use it.
This means that platforms controlling the trading technologies in the economy
need to “back” the ledger by forcing agents to use it. Otherwise, introducing
the ledger technology will not change the equilibrium. In this sense, “BigTech”
platforms are more natural providers of currency ledgers and “FinTech” services.
So, the dominance of Alibaba andWeChat in the Chinese payment system might
reflect their underlying advantage in providing payments.

(ii) Payment technology as a way to collateralize sales revenue: In this
economy, the type of payment technology matters for the collateralizability of
future sales revenue. Trades settled using the common ledger can always be
used for the repayment of contracts and so essentially act as digital “collateral”
for borrowing. Trades not settled using the ledger are not automatically used for
the repayment of contracts and so can only be used as collateral if the agents
coordinate on reporting and excluding defaulting agents. In this sense, the
model is set up so the platform can choose to what extent future sales revenue
can be collateralized across the economy. We extend this in the monetary model
in Section 3, where we allow collateralized sales revenue to be traded as “bills-
of-exchange” that relax the cash-in-advance constraint.

(iii) Monopoly rents or credit fragility: When the platform is very dominant in
the economy we see a key trade-off with having the platform provide a common
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ledger. On the one hand, the platform takes actions to get agents to cooperate
on enforcing default by threatening to seize their resources and exclude them
from the ledger. In this sense, we get a “fortuitous” alignment of incentives
where the platform wants to force the agent to behave in the way that they
would choose if they could agree to coordinate. On the other hand, the ledger
controller has a monopoly over the provision of ledger services and so is able to
extract rents by charging a high transaction fee.

When the platform is not very dominant in the economy, the alignment of
incentives breaks down and the platform is unwilling to provide the common
ledger for the economy. This is because the cost of making exclusion from the
platform a sufficiently harsh punishment becomes too much for the platform to
pay. In this sense, the uncollateralized credit equilibrium is “fragile”; a weak
platform finds it too costly for the platform to set up a no-default ledger. We
explore these tradeoffs in more detail in the dynamic general equilibrium model
in Section 3.

(iv) A natural monopoly dilemma: We can also see that there is a type of
natural monopoly force in this economy. The more trade that uses the ledger
(the higher is η), the more easily the ledger controller can enforce contracts.
For example, suppose that the minimum η for which the no-default incentive
compatibility constraint holds and µ̄ > 0 is greater than 1/2. In this case, there
is no way for multiple ledgers to operate in the economy and enforce contracts
unless they cooperate on enforcement. In other words, one large ledger provider
can better enforce contracts than a collection of non-cooperative smaller ledger
providers. So, a regulator in this environment needs to find a way to get a
monopoly ledger provider to behave more competitively or have multiple large
ledgers compete on markups while coordinating on contract enforcement. We
take up these questions in section 3.6.
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3 Dynamic Model of Platform & Ledger Provision

The model in Section 2 illustrates the value of having a large trading platform provid-
ing a settlement ledger. However, the model has some important limitations. First,
the platform can extract all producer profits (subject to incentivising no-default)
without distorting production. Second, agent decisions about where to trade are ex-
ogenous even though platform trading is what generates ledger demand. Third, all
payment is in terms of goods despite contemporary ledgers being digital.

In this section, we address these limitations by integrating the model from Sec-
tion 2 into an infinite horizon macroeconomic model where projects have flexible size,
agents chose where to trade goods, payments are settled using financial assets (money
or IOUs), and agents need to save resources through financial intermediaries. This
means there now two key endogenous prices: the real exchange rate between market-
places and the spread between the return on IOUs and money. We use this dynamic
model to understand feedback in the payment and trading systems. We show that
agents can be locked into repayment when they can only receive revenue in finan-
cial assets recorded through the ledger system. More generally, we show that the
willingness of the platform to enforce contracts depends upon agents having a low
elasticity of substitution between trading platforms. Finally, we show that platform
markup choices impact both the real exchange rate between the marketplaces and
interest rate in the economy. High markups discourage trade on the platform, which
increases money demand and decreases IOU demand leading to high interest rates in
the economy.

3.1 Environment Changes

Time is discrete with infinite horizon. There is a collection of goods that can be used
for production and consumption. The economy contains a continuum of agents, mu-
tual funds, and a private platform that operates a ledger for the economy. There is a
money asset provided by the government and an intra-period digital token created by
ledger. Each period is divided into a morning subperiod when a goods market opens
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and an evening subperiod when asset market opens. Agents need money or tokens to
trade in the morning subperiod, as in Svensson (1985) and Lagos and Wright (2005).

Production, preferences, and life-cycle: Each agent follows a “life-cycle” where they
start as producers and then become consumers. An agent born in the morning of
time t (at age 0) arrives without resources but with a technology to convert xt goods
at time t into yt+1 = zxαt goods at time t + 1, where z > 0 is productivity and
α ∈ (0, 1). At t + 1 (at age 1), they sell their goods, consume, and save. At time
t+ 2 (at age 2), they consume again, and exit. Instead of having random linear con-
sumption demand, agents of generation t smooth consumption and rank it according
to (1 − β)u(c1,t+1) + βu(c2,t+2), where u(c) = log(c), cτ,t is consumption of goods
produced by other agents at time t when the agent is age τ , and β ∈ [0, 1]. Although
β is no longer stochastic, it none-the-less continues to characterize the fraction of
producer consumption that is undertaken after contract settlement.

Goods market and trading frictions: As before, there is both a public marketplace
and a private platform for connecting buyers and sellers, indexed by n ∈ {o, p}

respectively. However, now agents must choose where to trade. In addition to
the pecuniary benefits from trading, each time period, t, for each technology, n ∈
{o, p}, each agent, i, gets an idiosyncratic, independent amenity draw for trad-
ing on that platform.3 The draw for agents of age τ is distributed according to
ζniτ,t ∼ log(ζnτ ) + Gu(1/γτ ,−(1/γτ )E), where Gu denotes the Gumbel distribution and
E is the Euler–Mascheroni constant, ζnτ is a technology specific component that char-
acterizes the average service quality provided by the platform to sellers, and γτ is the
elasticity of substitution. For convenience, we normalize ζ0

τ = 1 and denote ζ1
τ = ζτ .

We do not impose a physical interpretation on the amenity values but they could
be modeled as idiosyncratic search costs or good quality.4 At age 0, in the morning

3We introduce idiosyncratic risk in order to avoid “bang-bang” solutions to the platform choice
problem. Our model uses tools from the discrete choice literature. This is analogous to assuming a
CES preference function across the trading technologies.

4For the cost interpretation, note that the Gumbel distribution takes values across the real line
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subperiod, the agents observe their amenity shock for trading at age 0 and 1.5 At age
2, in the morning subperiod, the agents observe their amenity shock for trading at
age 2. Each morning subperiod, a competitive goods market opens on each trading
technology amongst the sellers and buyers who chose to go to the market. As before,
the platform charges a markup µ on sellers.

Payment technologies and currencies: Once again, there are two payment technologies
in the economy: spot trade and ledger trade. However, now we introduce currencies
and settlement using financial assets. Spot transactions are not recorded and are sub-
ject to a resource-in-advance constraint: a fraction κ of the payment must be made
using goods and/or public money (“dollars”) issued by the government. We let M t

denote government money supply at t and rebate seigniorage to the funds propor-
tional to their wealth. The other payment technology is the digital ledger provided
by the platform, which is not subject to a resource-in-advance constraint. During
the morning market, the digital ledger creates tradable tokens backed by non-risky
future asset revenue to be received in the future through the ledger. In essence, this
means that agents can use future ledger income to purchase goods. So, these tokens
can be interpreted as “bills-of-exchange” for revenue inside the ledger ecosystem. As
in Section 2, agents will choose spot trade, even on the platform, if not restricted
to do otherwise. So, we start by imposing that all trade on the public marketplace
is spot-trade while the platform mandates that sellers can only accept tokens when
trading on the private platform. In this sense, money is the currency for spot trade
while “bills of exchange” are currency for ledger trade. We relax these restrictions
when we consider the incentive compatibility constraint in subsection 3.4.

Funds: There is a continuum of competitive mutual funds that pool resources across

and so ζniτ would represent a normalized cost. For the good quality interpretation, observe that we
can write the total utility of a buyer receives as: log(eζniτ ζnτ c) and so eζniτ ζnτ is essentially scaling the
utility that the buyer gets from the good they consume.

5We make the assumption that agents observe their amenity shock for age 1 at age 0 for mathe-
matical convenience so that we can get a closed form solution to the agent problem.
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agents and facilitate currency exchange.6 On the asset side of a fund’s balance sheet,
a fund can make one-period loans to producers, purchase equity in the platform, and
hold reserves of currency. On the liability side, the fund issues one-period deposits
that allow agents to withdraw money or tokens. The deposit interest rate they receive
depends on which currency they request. We assume that the fund faces a “money-
in-advance” constraint that it must hold money for withdrawals. There are two types
of funds: those that accept defaulting agents and those that do not.

Asset, markets, and frictions: The economy has the following interperiod assets:
dollars issued by the government, deposits, producer loans, and shares issued by the
platform. The ledger also creates intraperiod tokens that pay one good during ledger
settlement at the end of the morning market. All markets are competitive. Following
the monetary literature, it will be helpful to distinguish between “money-goods”
traded in dollar transactions and “token-goods” traded in ledger transactions. Let
Pm
t denote the units of money required to purchases a good in the public marketplace

in the morning market. Let P b
t denote the units of tokens required to purchase a good

on the private platform in the morning market. Let Et denote the nominal exchange
rate in the evening market: the tokens required to purchase 1 dollar. We typically
use platform-goods as the numeriare and use “real prices” to refer to prices in terms
of platform-goods. We define the the real prices of money and bonds as qmt := Et/P

b
t ,

qbt := 1/P b
t . We define the real exchange rate between marketplace goods and platform

goods as εt := EtP
m
t /P

b
t and the real price of shares as qst . Where appropriate, we

use Rm
t,t+1, Rb

t,t+1, and Rs
t,t+1 to denote the real return on holding money, bonds, and

equity shares between t and t + 1. We refer to money as the currency on the public
market place and tokens backed by ledger assets as the asset on the private platform.
We let Rbn

t,t+1 denote the effective real borrowing rate when the agent requests the loan
in the medium of exchange on market n and let Rdn

t,t+1 denote the effective real deposit
return set by the fund when agents withdraw deposits in the medium of exchange on

6Having the mutual funds simplify asset pricing. An equivalent structure would be to have a
“Lucas family” that pools resources together but penalizes agents based on where they choose to
trade or what type of currency they bring back to family.
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market n.
The environment has the same information frictions as Section 2.1 except for two

differences. First, default no longer has an exogenous deadweight loss. Instead, if an
agent defaults on an IOU, then the holder can recover a fraction χ ∈ [0, 1) of the
input good and the producer keeps the rest of their production. Second, the platform
now excludes the funds accepting defaulting agents from the ledger technology rather
than the individual agents.

Timing: Each period is divided into a morning and an evening sub-period. In the
morning new IOUs are issued and goods are traded. In the evening, there is a sec-
ondary market for money and financial securities. The timing in the morning market
is the following:

(i) Age 0 agents are born and start the period without any assets or inventory.
They issue bonds that are discounted by the funds into the currency they need
to use to buy input goods. Age 1 agents start the period with inventory and a
payment type that they have chosen to accept. Age 2 agents start the period
with holdings of deposits in the funds.

(ii) Goods markets open on each trading technology. Agents withdraw their wealth
from the fund in the required currency (money or tokens). Agents trading in a
particular currency participate in a competitive goods market.7

(iii) At the close of the goods market, producers repay loans (or default and face
potential punishment). IOUs due are settled by the ledger. Depositors who
purchase goods consume and exit.

The timing in the afternoon market is the following:

(i) Age 1 agents deposit revenue with the fund.
7The search literature often studies models where pricing is determined through one-to-one match-

ing and bargaining over prices. Throughout this paper, we instead consider segmented competitive
markets. We believe this is a closer approximation to the markets we are studying, especially in
later sections when we model trade taking place on platforms such as Amazon or Alibaba.
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(ii) The currency and asset markets open. Funds choose their asset portfolio for
the next period, including their currency reserves.

3.2 Comparison to Other Models

Our environment attempts to nest or echo canonical models with currency and settle-
ment frictions. We intentionally do not try to offer a novel theory of money or ledger
demand. Instead, we are attempting to understand how large players in the economy
strategically supply ledger technologies into an economy. To help make this clear, we
discuss how this model relates to canonical models in the literature and why we have
made particular deviations.

(i) Cash-in-advance models (e.g. Svensson (1985), Lucas Jr and Stokey (1985)):
The timing of trade and construction of the “synthetic” real exchange rate
between the two segmented markets is taken from the two-currency cash-in-
advance model proposed by Svensson (1985). The difference in our set up is
that the cash-in-advance constraint is only relevant on the public marketplace
because the platform allows trade using digital tokens backed future guaranteed
revenue. In this sense, trade on the platform is settled using digital bills of
exchange that are automatically enforced at the end of the morning market.
This is similar to the existence of both cash-good trades and credit-good trades
in Lucas Jr and Stokey (1985) However, in our model, the creation of bills of
exchange is not exogenous. Instead, the platform endogenously sets up trading
rules to facilitate the creation of bills-of-exchange or credit-good trades in order
to maximize their markup profit.

(ii) Money search models (e.g. Lagos and Wright (2005)): Like in Lagos and Wright
(2005), we adopt a morning-evening subperiod structure where there are search
frictions in the morning market that necessitate holding money or having access
to a currency ledger. Unlike many papers in this literature, for simplicity,
we abstract from bargaining between agents and instead consider segmented
competitive markets. We also take the view that digital money trades occur
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with access to a currency ledger are so are necessarily monitored trades rather
than anonymous trades in a decentralized markets. For this reason, we focus on
how large institutions monitoring trades might supply digital currency ledgers
rather than on how demand for digital money is different to demand for other
monies.

(iii) Social planner ledger provision (e.g. Aiyagari and Wallace (1991) and Kocher-
lakota (1998)): Like in Kocherlakota (1998), we focus on how the introduction
of a common record keeping technology can change equilibrium allocations. We
have two main points of departure from Kocherlakota (1998): (i) we consider a
ledger provided by a profit maximising platform and (ii) agents choose whether
to use the ledger or an outside payment technology. If we took out spot trade
and treated the platform as benevolent agent, then we would get back the results
in Kocherlakota (1998).

(iv) OLG models with financial assets (e.g. Samuelson (1958), Diamond (1965)):
Our model nests a classic OLG environment in which agents need an asset
that they can buy when they are young and sell when they are old. In our
environment, there are two assets available for storage that are differentiated
by their usefulness in trade. In this sense, the financial assets in our model have
both a role for storage and as a medium of exchange. Like in these models, the
risk free rate in our model will end up being distorted. However, unlike in these
models, it is the strategic behaviour of the platform controlling trade that leads
to the interest rate distortion.

3.3 Market Equilibrium Without Default

In this subsection, we characterize equilibrium with agent choice about where to
trade. We first characterize the buyer and seller problems under no-default. We then
characterize market prices and show how platform markups affect general equilibrium.
We use our characterization to study how the platform decisions interact with general
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equilibrium. In the next section, we return to the difficulties of loan enforcement and
characterize the incentive compatibility constraint for no-default.

3.3.1 Agent Problem

We consider the problem for an agent in the generation born at time t ≥ 2 and use the
following terminology. Let nτ denote the agent’s choice of goods trading technology
at age τ and let nτ = (ns : 0 ≤ s ≤ τ) denote the history of technology choices up
to age τ . We refer to money as the currency on the public market place and tokens
backed by ledger assets as the asset on the private platform. Let εnt denote the real
exchange rate between goods on trading technology n ∈ {m, p} and goods on the
private platform if agents could access the afternoon asset market in the morning
(and so is εt if n = m and 1 if n = p).

We now set up the budget constraints. Consider the agent at age 0. The agent
chooses where to purchase input goods, n0, and where to sell output goods, n1. If
the agent purchase x0,t input goods on trading technology n0, then they must issue
εn0
t x0,t bonds.

At age 1 the agent then produces y1,t+1 = z(x0,t+1)α goods, consumes c1,t+1 goods,
repays the loan, and deposits d1,t+1 to a fund. If the agent sells on the private
platform, n1 = 1, then their revenue in platform goods is (1−µn1

t+1)y1,t+1. If the agent
sells on the public marketplace, n0 = 0, then their revenue in units of platform goods
is εtyt+1. Thus, their budget constraint at t = 1 in real terms when they buy inputs
on n0 and sell on n1 is:

d1,t+1 ≤ (1− µn1
t+1)εn1

t+1 (z(x0,t)α − c1,t+1)− εn0
t R

bn0
t,t+1x0,t (3.1)

Finally, at 2, the agent chooses a marketplace on which to consume, n2. If they
choose n2, then the real value of their withdraws is Rd,n2

t+2 d1,t+1 and so the agent faces
the budget constraint:

εn2
t c2,t+2 ≤ Rd,n2

t+1,t+2d1,t+1 (3.2)

22



Taking price processes as given, at age 0, an agent in generation t solves problem
(3.3) below:

Et
[

max
x0,c1,c2,d1,n

{
ζn0

0,t + ζn1
1,t+1 + (1− β)u(c1,t+1) + β(ζn2

2,t+2 + u(c2,t+2)
} ]

s.t. (3.1), (3.2).
(3.3)

where ζnτ,t is the idiosyncratic amenity of using trading technology n at age τ .

Theorem 3. An agent choosing trading technologies n2 = (n0, n1, n2), undertakes
production:

x0,t =
(
αz(1− µn0

t+1)
εn0
t R

bn0
t,t+1

) 1
1−α

, y1,t+1 = z

(
αz(1− µn0

t+1)
εn0
t R

bn0
t,t+1

) α
1−α

,(3.4)

π1,t+1 =
(
εn1
t+1αz(1− µn0

t+1)
(εn0
t R

bn0
t,t+1)α

) 1
1−α (1− α

α

)
.

and chooses consumption and saving:

c1,t+1 = (1− β)π1,t+1

εn2
t+1

, d1,t+1 = βπ1,t+1, c2,t+2 =
Rdn2
t+1,t+2βπ1,t+1

εn2
t+2

. (3.5)

The fraction of producers and consumers respectively choosing trading technologies
n0, n1, and n2 are:

ηn0
0,t =

(
ζn0

0 (εn0
t R

bn0
t,t+1)−

α
1−α

)γ0

∑
n′0

(
ζ
n′0
0 (εn

′
0
t R

bn′0
t,t+1)−

α
1−α

)γ0 (3.6)

ηn1
1,t+1 =

(
ζn1

1 (εn1
t+1(1− µn1

t+1))
1

1−α+β−1
)γ1

∑
n′0n
′
1

(
ζ
n′1
1

(
ε
n′1
t+1(1− µn

′
1
t+1)

) 1
1−α+β−1

)γ1 (3.7)

ηn2
2,t+2 =

(
ζn2

2 Rdn2
t+1,t+2/ε

n2
t+2

)γ2

∑
L′
(
ζ
n′2
2 R

dn′2
t+1,t+2/ε

n′2
t+2

)γ2 (3.8)

Proof. See Appendix B.
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From Theorem 3, we can see the expected relationships between the variables.
Holding everything else constant, an increase in the private platform trading advan-
tage, ↑ ζpτ /ζoτ leads to more agents using the private platform at each age. An increase
in the effective cost of borrowing on a trading technology, ↑ Rbn0

t,t+1, leads to fewer pro-
ducers purchasing input goods there. Likewise, an increase in the effective price of
goods on a trading technology, ↑ εn2

t+2, leads to fewer agents purchasing consump-
tion goods there. Finally, an increase in the effective price of goods (net of fees),
↑ εn1

t+1(1− µn1
t+1), leads to more agents selling on the platform at age 1.

3.3.2 Fund Problem

In the evening of each period, t, the funds take deposits, Dt, from agents. They then
purchase money, Mt, (to back deposit withdrawals and finance issuance of loans in
dollars), purchase bonds, Bt, and purchase shares in the platform. So, their budget
constraint at t is:

qmt Mt + qbtBt + qstSt ≤ Dt. (3.9)

In the morning of t + 1, depositors trading on the public marketplace (n = m)
withdraw money and depositors trading on the private platform (n = p) take tokens
backed by the market value of the remaining assets in the fund. The fund offers
depositors withdrawing in money the return on money and the other depositors the
return on assets that can be used in exchange on the ledger. So the “money-in-
advance” constraint on the fund is:

κηm2,t+1R
dm
t,t+1Dt ≤ qmt+1Mt ⇔ κηm2,t+1Dt ≤ qmt Mt (3.10)

Lemma 1 states fund sets returns to offset the opportunity cost of having to hold
money or bonds.

Lemma 1. If the money-in-advance constraint binds, then the borrowing rate and
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deposit rate faced by agents using trading technology n are give by:

Rbn
t,t+1 =

Rb
t−1,t

(1− κ)Rb
t−1,t + κRn

t−1,t
Rb
t,t+1

Rdn
t,t+1 = (1− κ)Rb

t,t+1 + κRn
t,t+1 (3.11)

Proof. See Appendix B.

3.3.3 Market Equilibrium

We now consider market equilibrium. We define equilibrium for an arbitrary sequence
of markup policies although we will ultimately focus on the steady state limit with a
fixed markup.

Definition 2. Given a sequence of ledger policies, µµµ, a competitive equilibrium
is a collection of price and return sequences, (Rb,Rm,qs), agent choice sequences,
({ηηη

τ
}τ≤2, x, y, c1, c2), such that: (i) given prices, the agent choices solve optimiza-

tion problem (3.3), (ii) given prices, the fund choices solve equation (3.11), and (iii)
market clearing is satisfied for the goods market on each trading technology, the IOU
market, the money market, and the equity market:

ηn1,t
∑
n0

ηn0
0,t−1y

(n0,n)
1,t = ηn0,t

∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn1,t

∑
n0

ηn0
0,t−1c

(n0,n)
1,t

+ ηn2,t
∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t , ∀n ∈ {o, p},

Dt =
∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t ,

qbtBt =
∑
n0,n1

ηn0
0,tη

n1
1,t+1ε

n0
t x

(n0,n1)
0,t ,

Mt = M t,

St = 1.

Theorem 4 characterizes equilibrium under some parametric restrictions on the
elasticities of substitution for buyers at ages 0 and 2. Our environment is sufficiently
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tractable that we get a closed form expression for the real exchange rate εt. However,
the expressions for Rb

t,t+1, Rm
t,t+1, and qst are necessarily difference equations because

previous agent choices discipline their current

Theorem 4. Suppose that that 1+αγ0
1−α = 1 + γ2 and (ζn0 )γ0 = (ζn2 )γ2. Let the excess

return on bonds over money required to satisfy the cash in advance constraint be
denoted:

St,t+1 =
Rb
t,t+1

(1− κ)Rb
t,t+1 + κRm

t,t+1

Then the real exchange rate, bond return, price of money, and equity price satisfy:

εt =
ζγ1

1 (1− µt)
γ1+α
1−α −γ1(1−β)

ζγ2
2 S

1+γ2
t−1,t


1

γ1+α
1−α +1+γ2−γ1(1−β)

(3.12)

Rm
t,t+1 =

(
ηo2,t+1Dt+1 +X0,t+1

ηo2,tDt +X0,t

)(
M t

M t+1

)
(3.13)

qst = 1
Rb
t,t+1

(
πst+1 + qst+1

)
(3.14)

ηp2,tβΠ1,t =
∑
n1

ηn1
1,t+1

(
ηo0,tεt

(
1 +

Rb
t−1,t

Rm
t−1,t

)
x

(o,n1)
0,t + ηp0,tx

(p,n1)
0,t

)
+ qst (3.15)

where X0,t := ∑
n1 η

o
0,tη

n1
1,t+1εtSt−1,tx

(o,n1)
0,t is aggregate input purchases on marketplace

o at time t, and Π1,t := ∑
n0,n1 η

n0
0,t−1η

n1
1,tπ

(n0,n1)
1,t is aggregate profit at time t.

Proof. See Appendix B.

Evidently, the real exchange is decreasing in µt and increasing in the excess return
on bonds over money required to satisfy the cash-in-advance constraint. This is
because an increase in µ encourages producers to choose the public public marketplace
while an increase in the opportunity cost of holding money for the public marketplace
encourages buyers to choose the private platform.

The return on money is essentially the ratio of money demand growth to money
supply growth. This implies that, in the steady state, we have the familiar for-
mula that Rm

t,t+1 = 1/gM , where gM is the growth rate of money. As is standard
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in “currency-in-advance” models, the environment has money neutrality in the sense
that the level of money supply does not affect real variables. However, it does not
have super-neutrality in the sense that the growth rate of money affects real vari-
ables by impacting agent borrowing decisions. The price of equity is given by future
dividends discounted by the bond rate.

The final equation implicitly gives the bond interest rate in the economy. To help
isolate forces, consider the steady state in which µt = µ, εt = ε, Rb

t,t+1 = Rb, Rm
t,t+1,

and qst = qs are all constant. In addition, suppose that α = 0.5 and the government
follows a “Friedman rule” so that St,t+1 = 1. In this case, the interest rate satisfies:

Rb =
∑
n1 η

n1
1 (αz(1− µn1)εn1)

1
1−α

(
2ηo0 (ε)−

α
1−α + ηp

)
+ π(Rb)2

Rb−1

ηp2β
∑
n0,n1 η

n0
0 ηn1

1

(
αz(1−µn1 )εn1

(εn0 )α
) 1

1−α
(

1−α
α

)
which is a quadratic in Rb. The numerator reflects the demand for ledger assets by
the fund while the denominator reflects the supply of deposits that can be used to
purchase ledger assets, given the cash-in-advance constraint for trading on the public
marketplace. Observe that a decrease in ζ2 that leads to a decrease in ηp2 causes an
increase in the loan rate. This is because a decrease in ηp2 means that more depositors
withdraw money and so the fund has to hold more money. As a result the supply of
fund deposits that can be used to purchase ledger assets decreases and so the return
on ledger assets increases.

Now suppose we relax the Friedman so that S depends uponRb and agent decisions
about where to trade are impacted by Rb. In this case, the agent trading behaviour
introduces feedback into the interest rate. A decrease in ζ2 still pushes ηp2 down but
this is partially offset by the increase in the bond rate which encourages agents to
save into ledger assets and trade on the platform.

To help illustrate these forces, we plot the steady state equilibrium in Figure 1 as
a function of the platform markup. The blue dashed line show the partial equilibrium
allocations as µ varies when the interest rate is fixed at 3%. The black solid line shows
general equilibrium when the equilibrium is allowed to vary. From the blue dashed
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lines we can see that a higher markup leads to fewer agents going to the platform,
which ultimately decreases the real exchange rate (i.e. makes the public marketplace
relatively cheaper). From the black solid lines we can see that, in general equilibrium,
the loan rate, Rb, increases to encourage agents to hold ledger assets and come to
the platform. Ultimately, this ends up causing the platform markups to have a much
greater impact on output. In this sense, the platform trying to extract rents in the
product market restricts the supply of credit in the loan market.

Figure 1: Equilibrium for µ ∈ [0, 0.1].

Other variables are z = 1, α = 0.45, β = 0.9, γ1 = 1.9, γ2 = 1.5, ζ = 1.0, and κ = 0.1.

3.4 Default and Incentive Compatibility

We now return to the question of incentive compatibility in the dynamic model.
Funds that accept defaulting agents cannot use the payment ledger because as soon
as they store wealth in the fund, their resources will be taken to fulfill contracts. So,
if agents default and deposit into a fund, then they are restricted to the monetary
system. The agent problems are very similar so we defer the details to Appendix B.
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Theorem 5 states the main result: the incentive compatibility constraint on deterring
agents from defaulting.

Theorem 5. The incentive compatibility constraint is:

ν̄2,t+2

ν̌2,t+2
≥ π̌

π
(3.16)

where ν̄2,t+2/ν̌2,t+2 is the relative benefit of having access to the platform at t = 2 and
π̌/π is the relative additional profit when the agent defaults:

ν̄2,t+2

ν̌2,t+2
=
 Rt+1,t+2/εt+2∑

n2

(
ζn2
t+2R

n2
t+1,t+2/ε

n2
t+2

)γ2

βγ2

π̌

π
=
(
Rbn0
t,t+1

χ

) α
1−α

For χ > 0, the incentive compatibility constraint will be satisfied for sufficiently large
ζ2.

Proof. See Appendix B.

Contract enforcement is similar to in the three-period model. If agents trade using
the platform, then they have to repay because the platform forces them to use the
ledger. If they trade using the public marketplace, then they can trade using money,
default and deposit into the shadow financial system. The IC constraint for non-
default when trading on the public marketplace is given by equation (3.16). This is
the analogue of equation (2.2) in the three-period model. It says that the benefit of
having access to the platform at t = 2 needs to be greater than the additional profit
gained by defaulting.

To help illuminate enforcement in the dynamic model, we consider a collection of
special cases.

Case: β = 1 and no money. If there is no money in the economy and agents only
value consumption at age 2, then the presence of a ledger is sufficient to incentivise
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repayment, regardless of what the platform does. Why? When β = 1, agent do not
value consumption at t = 1 and do not engage in barter trade with other agents of
their generation for perishable goods. Instead, they only trade goods to agents of
generations in exchange for financial assets. If there is no money, then age 1 agents
selling goods receive newly issued IOUs from the age 0 agents and old IOUs from the
age 2 agents purchasing goods. Since all IOUs are on the ledger, there is no way for
the age 1 agents to default, regardless of whether the platform excludes defaulting
agents or not. In this sense, the agents are locked into the ledger payment system
because they need a way to store wealth.

Case: β = 1 with money and ledgers. Now, suppose we introduce money into
the model with β = 1. Now, agents have an outside payment option and the platform
is necessary for ensuring contract enforcement in the economy. The have no need to
consume at t = 1 and so all trade occurs after contract settlement. In this case, plat-
form exclusion from purchasing consumption goods at t = 2 can discipline no-default.

Case: β = 0 with money and ledgers. In this case, exclusion from trade at t = 2
is no longer relevant. In order to get no-default, the platform has to ensure that the
platform price is sufficiently high that the opportunity cost of not being able to sell
on the platform is a sufficiently high punishment for no-default. If ζ1 is low, then this
requires a negative markup µ, running the risk of credit fragility as in Section 2.

3.5 Platform Problem (Sequential Formulation)

We can now write down the problem of a private platform. Suppose the econ-
omy starts with an initial collection of age 1 agents with loans and goods inventory
(b0,0, y1,0) and a collection of age 0 agents with wealth (a2,0) in a collection of funds.
Given a belief about the interest rate processes, {R̂b, R̂m}, the platform chooses a
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sequence µ to maximise their equity price by solving problem:

qs0 = max
µ

{ ∞∑
t=0

ξ̂0,tπ
s
t

}
s.t.

πst = µtη
p
1,t
∑
n0

η0,t−1y
(n0,p)
1,t , t ≥ 1

πs0 = µ0η1,0y1,0

Agent choices: (3.4), (3.5), (3.6), (3.7), (3.8),

Equilibrium prices: (3.12), (3.13), (3.14), (3.15)

where ξ̂0,t = ∏t
j=0(R̂j,j+1)−1 is the household SDF.

We defer the first order conditions for this problem to Appendix B.3. Figure
2 plots the numerical solution to the equilibrium for different values of buyer elas-
ticity. Evidently, for low γb, the constraint on incentivising default is non-binding
because it is easy for the platform to attract buyers. However, as γb increases, it
becomes more difficult for the platform to attract buyers and so the constraint even-
tually binds. Once this occurs, the platform must significantly decrease ψ in order
to attract enough buyers to achieve the no-default equilibrium. In this sense, buyer
elasticity is the key variable for understanding to what extent platform rent extrac-
tion is disciplined by the platform needing to attract traders.

Credit Fragility: Figure 2 shows that for very large γb, the platform actually needs
to sets a negative markup (i.e. a subsidy) in order to attract sufficiently many traders
which allows it to enforce contracts. This means that the platform derives negative
value from running a non-default ledger and so would not choose to ensure contract
enforcement. In this sense, the uncollateralized credit equilibrium is “fragile”; strong
competition from the dollar and public marketplace make it too costly for the platform
to set up a no-default ledger. This implies that regulatory changes that increase
agent ability to switch away from trading platforms would not necessarily be welfare
improving.
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Figure 2: Steady state solution to platform problem for γ2 ∈ [0, 2].

Panel 1: The blue dashed line depicts the platform’s markup choice, µ∗ if they are not constrained
by having to ensure no-default. The red dashed line depicts the minimum value µ̄ required to deter
funds from defaulting. The black line depicts the markup for the equilibrium chosen by the platform,
µ. Panel 2: shows the equilibrium real exchange rate under the platform’s choice of µ. Panel 3:
shows the fractions of buyers and sellers that choose platform 1 given µ. Panel 4: shows the time 0
value of a platforms that sets up a ledger and chooses the no-default equilibrium. Other variables
are γ1 = 0.1, z = 1.0, α = 0.45, ρ = 0.2, λ = 1.0, ζ = 1, κ = 0.1, and χ = 0.5.

3.6 Discussion of Regulatory Options

We have shown that a tech platform will provide and “back” a common settlement
ledger in an unregulated economy if they have a sufficiently dominant trading tech-
nology. This incentivizes the financial sector to coordinate on enforcement but also
gives the platform market power to extract rents. In this sense, regulators have a
“natural monopoly” dilemma. We close the paper by discussing how some classic
policy responses would play out in our model: regulated competition between plat-
forms and a public ledger option. We do this by varying the outside option with
which the platform competes.

3.6.1 Regulated Platform Competition

Environment changes: The environment is the same as in subsection 3.1 but with
the following changes. There are now two private platforms, labeled n ∈ {1, 2}.
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There is no public marketplace or public currency. Both platforms manage their own
ledger, charge a markup µn, and have average trading advantage ζn. For simplicity,
we assume that the platforms choose a fixed µ at time t = 0 for all periods. We let
ητ,t denote the fraction of agents at age τ choosing platform 1.

Since there is no public dollar, agents cannot undertake side payments; all trans-
actions are observed by one of the two platforms. In other words, in this new envi-
ronment the only way producers can default is by writing a contract on the ledger
provided by platform n, then defaulting and trading on the other platform n′. We
also now assume that 1−χ captures the dead-weight loss producers incur when they
default and lenders get nothing when default occurs. We use the currency provided
by ledger 1 as the numeraire for asset pricing. So, εt now refers to the real exchange
rate from tokens provided by platform 1 to tokens provided by platform 2.

Regulation: The regulator allows the platforms to bargain at time t = 0 over com-
mitting to exclude funds who allow their depositors to default on contracts on the
other ledger. We assume that funds face no borrowing constraints or commitment
problems during this bargaining and the the Nash bargaining protocol is followed.
The regulator does not allow the platforms to collude on setting markups at times
t ≥ 0.

Platform competition at t = 0: For t > 0, the equilibrium is the same as in the
subsection 3.3 but with (1 − µt) replaced by (1 − µ1

t )/(1 − µ2
t ). Let qEn0 denote the

price of equity in platform n at t = 0 under cooperation on enforcement for t ≥ 0
and let q̃En0 denote price of equity in platform n at t = 0 if there is no cooperation on
enforcement for t ≥ 0. The surplus from cooperation is S = qE2

0 − q̃E2
0 + qE1

0 − q̃E1
0 .

If the surplus is positive, then the platforms bargain over coordination on contract
enforcement. We assume that platform 1 makes a (positive or negative) transfer T to
platform 2 at time 0 and the payment is determined by a Nash Bargaining protocol.
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In particular, we have:

T = arg max
T

{(
qE2

0 − T − q̃E2
0

) (
qE1

0 + T − q̃E1
0

)}
= qE2

0 − q̃E2
0 − (qE1

0 − q̃E1
0 )

If the surplus is negative, then the platforms do not coordinate. Proposition 1 shows
that, when platforms are symmetric, the outcome of the bargaining is contract en-
forcement on both ledgers whereas when platforms are asymmetric the dominant
platform provides the ledger.

Proposition 1. We have the following:

(i) If the platforms are symmetric, then the outcome of the bargaining at time 0 is
that contracts are enforced on both ledgers and no transfer is made.

(ii) If ζ := ζ1
τ /ζ

2
τ > 1, then for χ and ζ sufficiently high, the outcome of the bargain-

ing at t = 0 is that platform 1 provides the monopoly ledger for the economy.

Proof. See Appendix B.

The first part of the proposition says that contract enforcement coordination is
straightforward when the platforms are similar. The second part of theorem reinforces
the market structure result in Section 2. Ultimately, it shows that the only ledger
operators that are viable are those that also possess a platform trading technology. In
other words, there is a natural bundling between offering ledger and trading services.
This implies that a financial intermediary with no trading technology (which would be
modeled as ζ2 = 0 in our environment) would never provide the ledger in equilibrium.

Given the outcome of the bargaining over contract enforcement, we show the nu-
merical solution to symmetric platform competition for t > 0 in Figure 3. Evidently,
we recover the perfectly competitive market outcome as γ1 → ∞ and the agents
become highly elastic. In this sense, seller elasticity governs the extent to which we
recover Bertrand style competition. This suggests two major lessons for financial
competition regulators:
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Figure 3: Ledger choice for γ1 ∈ [0, 20].

Other variables are γ2 = 0.5, z = 1.0, α = 0.75, ρ = 1.0, λ = 1.0, ζ = 1, κ = 0.1, and χ = 0.5.

(i) They should focus on understanding the elasticity with which buyers and sellers
are able substitute between trading technologies.

(ii) Small platforms need to be able to commit to making payments to large plat-
forms in order to get cooperation on an enforcement equilibrium.

3.6.2 Public Ledger Option

Environment changes: We now consider the environment from subsection 3.1 but with
public money replaced by a digital ledger provided by the government that can be used
by all intermediaries and agents in the economy. This can be interpreted as giving
common access to central bank reserves, introducing a public CBDC, or allowing tech
platforms access the FedNow payment system. The government commits to using
payment revenue to enforce contracts written on the ledger. This means that there is
no longer a cash-in-advance constraint on the public marketplace and contracts are
enforced on the public marketplace if agents use the public ledger.

The platform now has additional relevant strategic options. As before, it could
help ensure contract enforcement by forcing traders to pay using the public settlement
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ledger or their own ledger. However, it could also choose to provide a private token
that replaces public money for hidden trades.

Corollary 2. Let (R, Y ) denote the steady state equilibrium interest rate and aggre-
gate output from 3.5 when the government provides money and the platform provides
the settlement ledger. (R∗, Y ∗) denote the steady state equilibrium interest rate and
aggregate output when the government provides a common digital ledger and the plat-
form optimizes markups.

(i) If the government creates a forced tender ledger that must be used for all pay-
ment, then all contracts are enforced, the cash-in-advance constraint is elimi-
nated, R∗ < R, and Y ∗ > Y .

(ii) If the government allows the platform to choose any payment technology, then
the platform response depends upon their trading advantage. For sufficiently
large ζ, the platform forces agents to use public ledger. For sufficiently small ζ,
the platform prefers to offer its own private token that is only used for trade on
the ledger and allow agents to default.

If it feasible for the government to create a forced tender ledger, then the economy
ends up back in the world of Kocherlakota (1998). All agents are using a ledger run
by a benevolent central planner ensuring that all contracts are enforced.

However, if the platform provides public ledger as a voluntary payment technology,
then the response of the platform is more complicated. In our original model, the
platform is offering the only payment technology where contracts can be enforced
whereas the government is offering the payment technology that can be used for
side-trading to avoid contract enforcement. We showed that the platform is strongly
incentivized to ensure contract enforcement because otherwise there is no lending and
production in the economy. When the government introduces a public ledger, this
reverses. The government is now offering a ledger where contracts are always enforced
and platform is deciding whether to offer the side-trading option where contracts are
not enforced. That is, the platform is now deciding whether or not set up a “black-
market” with a private token. The platform faces the trade-off that allowing default
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increase the interest rate in the economy thereby decreasing output but allowing
default also attracts more producers to trade on the platform. What the platform
decides depends upon their market power.

In our environment, introducing a public ledger option is potentially powerful but
also offers a few points of caution for regulators:

(i) A forced tender ledger is very powerful but raises privacy concerns.

(ii) Introducing a non-compulsory public ledger improves contract enforcement in
the public marketplace but incentivizes the private platform to set up a “black-
market” with its own private tokens where agents can default.

4 Conclusion

In this paper, we model the strategic decision making of a private controller of the
currency ledger used for settling transactions and writing contracts. We find that in
an unregulated economy “BigTech” platforms are likely to provide “FinTech” services.
This brings both benefits and costs. Tech platforms can expand uncollateralized credit
across a supply chain by exploiting their control of the payment system to better
coordinate the financial system to enforce contracts. However, Tech platforms will also
use their control of the ledger to increase their market power and charge high markups.
We see these issues playing out in China where tech platforms Alibaba and WeChat
have created a well-functioning payment system with very limited competition.

Ultimately, our model suggests that currency ledgers may need to be regulated
like other natural monopolies. This could include restrictions on when ledgers can
cooperate on contract enforcement and compete on markups. It could also include a
competing public option in the form a programmable Central Bank Digital Currency
(CBDC) ledger. We consider further modeling of the government’s regulatory options
as important future work.
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A Supplementary Proofs to Section 2

Proof of Theorem 1. Suppose that the ledger is set up to enforce contracts and ex-
clude agents who default but the platform allows agents to chose the use of payment
technology (ιs = 1) and does not exclude agents from the trading technology (ιd = 1).
Then at t = 1 and t = 2 all agents default.

Suppose that the platform prevents the use of spot trade (ιs = 0) and threatens
to exclude defaulting agents but the ledger operator does not allow the ledger to used
on the platform and does not share ledger information with the platform. Then, at
t = 1 no agents can trade on the ledger and no trade occurs and at t = 2 the platform
cannot identify the defaulting agents and so all or no agents are allowed to trade. In
this case, we effectively have ιp = 1 and so all agents default.

Proof of Theorem 2. In all cases the platform sets µ1 = 1 since there is no cost to
extracting markups for trades at t = 1. For other choices, we have to consider a
collection of four cases.

(1) First, suppose that the platform does not exclude spot trade or defaulters
ιs = ιp = 1. Then all agents default, no loans are made, and the platform gets zero
profit.

(2) Now, suppose that the platform excludes spot trade and defaulters ιs = ιp = 0.
In this case, the IC constraint becomes:

µ ≤ 1−
(

1− η
η

)(
ψz

z −R
− 1

)

There are two subcases. (Subcase a) If the platform wants contract enforcement, then
it will choose the maximum µ that satisfies the constraint and so the total profit for
the platform under contract enforcement is:

η ((1− β)(z −R) + µ̄β(z −R)) (A.1)

where µ̄ =
(
1−

(
1−η
η

) (
ζz
z−R − 1

))
, R = 1/φ, and φ = (1−β)η+β. This is feasible so

long as 1/((1−β)η+β) ≤ z. (b) If the platform does not want contract enforcement,
then it chooses µ1 = 1 and so profit is:

η
(
(1− β)(z − R̂) + βψz

)
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where R̂ = 1/φ̂, and φ̂ = (1 − β)η. This is feasible so long as 1/((1 − β)η) ≤ z. So,
the platform prefers contract enforcement iff:

−η(1− β)R + µ̄β(z −R) ≥ − η(1− β)R̂ + βψz

−η(1− β)R− µ̄Rβ + βR− βR + µ̄βz ≥ − 1 + βψz

⇔ −1− (µ̄− 1)βR + µ̄βz ≥ − 1 + βψz

⇔ (1− µ̄)βR + µ̄βz ≥ βψz

(3) Now, suppose that the platform does exclude spot trade ιs = 0 but does not
exclude defaulters ιd = 1. Then the platform sets µ1 = µ2 = 1 and takes profit:

η((1− β)(z −R) + βψz) = η(((1− β) + βψ)z − 1

where we have used that φ = η(1− β) and R = 1/φ.
(4) Finally consider the case where the platform does not exclude spot trade ιs = 1

but does exclude defaulters ιd = 0. If the platform wants contract enforcement, then
it will choose the maximum µ that satisfies the constraint and so the total profit for
the platform under contract enforcement is:

η ((1− β)ψz + µ̄β(z −R))

where µ̄ =
(
1−

(
1−η
η

) (
ζz
z−R − 1

))
, R = 1/φ, and φ = β. If the platform does not

want contract enforcement, then there is no trade. So, the platform prefers contract
enforcement iff:

η ((1− β)ψz + µ̄β(z −R)) ≥ 0

To complete the proof, we need to consider the limiting cases. Suppose that η → 1.
Then µ̄ → 1 and φ → η(1 − β) + β → 1. In this case, equation (A.1) becomes the
largest profit amongst all the cases.

For the other limiting case that η → 0, we have that φ → 0 and R → ∞. This
means that cases (2b) and (3) with default on t = 2 trades are infeasible. We also
have that µ̄→ −∞ for cases (2a) and (3) so the platform would have to earn negative
profits in order to incentivize contract enforcement. Thus, the platform does not want
to set up the ledger.
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B Supplementary Proofs for Section 3(Online Ap-
pendix)

B.1 Discrete Choice Problems

This section of the appendix contains working for the discrete choice problems. Since
these are standard results, we provided limited detail.

Lemma 2. Let {ζn}n≤N be a collection of independent draws from Gu(γ, µ), where
µ = −γE and E represents the Euler–Mascheroni constant. Let u(c) = log(c). Then:

max
n≤N
{ζn + ϕnu(πn)} ∼ Gu

(
γ, µ+ γ log

(∑
n

(πn)ϕn/γ
))

(B.1)

and so we have:

E[max
n
{ζn + ϕn log(πn)}] = γ log

(∑
n

(πn)ϕn/γ
)
,

P
(
n = argmaxn′

{
ζn
′ + ϕn

′ log(πn′)
})

= (πn)ϕ
n/γ∑

n′ (πn′)
ϕn′/γ

Proof. Using the definition of the Gumbel distribution and the independence of the
N draws, we have that:

P(max
n
{ζn + ϕnu(πn)} ≤ k) =

∏
n

P(ζn + ϕnu(πn) ≤ k)

= exp
(∑

n

−e−(k−µ)/γeϕ
nu(πn)/γ

)

= exp
(
−e−(k−µ−γ log(∑n

eϕ
nu(πn)/γ))/γ

)

which implies result (B.1). From the properties of the Gumbel distribution, the
expectation is:

P
(
n = argmaxn′

{
ζn
′ + ϕn

′ log(πn′)
})

=
[
µ+ γ log

(∑
n

(πn)ϕn/γ
)]

+ γE

= γ log
(∑

n

(πn)ϕn/γ
)
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and the probability of choosing n is:

P(n = argmax{ζni + ϕn log(πn)}) = eϕ
nu(πn)/γ∑

n′ eϕ
n′u(πn′ )/γ

= (πn)ϕ
n/γ∑

n′ (πn′)
ϕn′/γ

B.2 Other Proofs

Proof of Theorem 3. We solve the problem recursively. At age 2, taking price pro-
cesses as given, an agent with deposits d chooses on which platform to search to solve
problem (B.9) below (dropping the explicit i superscript and the time subscript on
the choice n2):

V2,t+2(d) = E
[
max
c,n

{
ζn2,t+2 + u(c)

}]
s.t. c ≤ Rn

t+1,t+2d/ε
n
t , ∀L ∈ {0, 1},

(B.2)

where V2,t+2 is the value function at the start of the agent’s final period. Using
standard discrete choice results (summarized in Lemma 2 in the Appendix), the value
function satisfies:

V2,t+2(d) = log (ν̄2,t+2d) (B.3)

where the average purchasing power at time τ is:

ν̄2,t+2 :=
(∑

n′

(
ζn
′

t+2R
n′

t+1,t+2/ε
n′

t+2

)γb)1/γb

and the fraction of buyers who choose n at time t+ 2 is given by:

ηn2,t+2 =

(
ζnRn

t+1,t+2/ε
n
t+2

)γ2

∑
n′

(
ζn′Rn′

t+1,t+2/ε
n′
t+2

)γ2

At age 1, after selling production goods, taking price processes as given, an agent
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who has made profit π in token goods selling on platform n solves the problem:

V n
1,t+1(π) = max

c,d
{(1− β)u(c) + βV2,t+2 (d)}

s.t. d ≤ π − εnt+1(1− µnt+1)c,

Substituting in the constraint gives the standard consumption saving decision:

max
d

{
(1− β)u

(
π − d

εnt+1(1− µnt+1)

)
+ βV2,t+2(d)

}

The first order condition gives:

0 = − (1− β)u′(c1,t+1)
εnt+1(1− µnt+1) + βV ′2,t+2(d)

Imposing the functional forms and rearranging gives:

1− β
εnt+1(1− µnt+1)c = β

d
= β

π − εnt+1(1− µnt+1)c

and so:

c1,t+2 = (1− β)π
εnt+1(1− µnt+1) , d1,t+1 = βπ

And so we have:

V n
1,t+1(π) = (1− β) log

(
(1− β)π

εnt+1(1− µnt+1)

)
+ β log (ν̄2,t+2βπ)

= log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log

(
εnt+2(1− µnt+1)

)
+ log(π)

Now consider the problem of an agent at age 0 during the morning market. They
choose where to purchase input goods, where to sell output goods, and the quantity
of input goods to solve (B.10) below:

V0,t = Et
[

max
n0,n1,x,π

{
ζn0

0,t + ζn1
1,t+1 + V n1

1,t+1(π)
}]

s.t. (B.4)

π = εn1
t+1(1− µn1

t+1)zxα −Rbn0
t,t+1x
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For a given choice of n1, the agent choose x to maximize:

max
x

{
εn1
t+1(1− µn1

t+1)zxα −Rbn0
t,t+1x

}
Taking the FOC gives that producer labor demand, output, and profit are given by:

x0,t =
(
αz(1− µn0

t+1)
Rbn0
t,t+1

) 1
1−α

, yn0
1,t+1 = z

(
αz(1− µn1

t+1)
Rbn0
t,t+1

) α
1−α

,

π1,t+1 =
(
εn1
t+1αz(1− µn1

t+1)
(Rbn0

t,t+1)α

) 1
1−α (1− α

α

)
.

Returning to the value functions, we have that:

V n
1,t+1(π) = (1− β) log

(
(1− β)π

εnt+1(1− µnt+1)

)
+ β log (ν̄2,t+2βπ)

= log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log

(
εnt+2(1− µnt+1)

)
+ log(π)

And so we have:

V0,t = Et
[

max
n0,n1,x,π

{
ζn0

0,t + ζn1
1,t+1 + V n1

1,t+1(π)
}]

= Et

max
n0,n1

ζn0
0,t + ζn1

1,t+1 − log
((
εn1
t+2(1− µn1

t+1)
)1−β

)

+ log
(εn1

t+1αz(1− µn1
t+1)

(Rbn0
t,t+1)α

) 1
1−α (1− α

α

)


+ log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)

= Et

max
n0,n1

ζn0
0,t + ζn1

1,t+1 + log


(
εn1
t+1(1− µL′t+1)

) 1
1−α−(1−β)

(
Rbn0
t,t+1

) α
1−α





+ log
(

(αz)
1

1−α

(1− α
α

))
+ log

(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)

and Lemma 2 implies that the fraction of agents at age 0 choosing to purchase inputs
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on n0 and at age 1 choosing to purchase on n1 satisfies:

ηn0
0,t =

(
ζn0

0 (Rbn0
t,t+1)−

α
1−α

)γ0

∑
n′0

(
ζ
n′0
0 (Rbn′0

t,t+1)−
α

1−α
)γ0

ηn1
1,t+1 =

(
ζn1

1 (εn1
t+1(1− µn1

t+1))
1

1−α+β−1
)γ1

∑
n′0n
′
1

(
ζ
n′1
1

(
ε
n′1
t+1(1− µn

′
1
t+1)

) 1
1−α+β−1

)γ1

and:

V0,t = log(ν̄0,t) + log(ν̄1,t+1) + β log (ν̄2,t+2)

+ log
(

(αz)
1

1−α

(1− α
α

))
+ log

(
(1− β)1−βββ

)
where:

ν̄0,t :=
(∑
n0

(
ζn0

0,t

(
Rbn0
t,t+1

)− α
1−α

)γ0
)1/γ0

ν̄1,t+1 :=
(∑
n1

(
ζn1

(
εn1
t+1(1− µn1

t+1)
) 1

1−α+β−1
)γ2

)1/γ2

Proof of Lemma 1. We start by setting up the constraints on the fund. The return
for depositors withdrawing to trade on the public marketplace is:

Rdo
t,t+1 = qmt+1

qmt
. (B.5)

and so the “money-in-advance” constraint on the fund is:

ηm2,t+1R
do
t,t+1Dt ≤ qmt+1Mt ⇔ ηo2,t+1Dt ≤ qmt Mt (B.6)

Now consider the return for the other depositors. LetAt := qmt (Mt−ηo2,t+1Dt/q
m
t )+

qbtBt + qstSt. After money withdrawals, the remaining wealth is:

At+1 = (qbt+1Et+1)(Mt − ηm2,t+1Dt/q
m
t ) +Bt + (qst+1 + πst+1)St
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and so the return for depositors trading on the platform is:

Rdp
t,t+1 = At+1

At
= qbt+1Et+1

qmt
θMt + 1

qbt
θBt + qst+1 + πst+1

qst
θB,1t (B.7)

where θMt := qmt (Mt − ηm2,t+1Dt/q
m
t )/At, θBt := qbtBt/At, and θSt := qstSt/At.

The fund maximizes its return to depositors (B.8) below:

max
Mt,Bt,St

{
ξt,t+1(ηo2,t+1R

dp
t,t+1 + ηp2,t+1R

dp
t,t+1)Dt

}
s.t. (3.9), (B.5), (B.6), (B.7)

(B.8)

where ξt,t+1 :=
(

1−β
β

)
V2,t+2(a)/∂cu′(c2,t+2) is the agent discount factor. Thus, in

equilibrium, we must have that the return on holding money to make dollar loans in
the morning market, bonds, and equity are the same:

qbt+1Et+1

qmt
= 1
qbt

= qst+1 + πst+1
qst

In particular, this implies that the price of loans in m-goods is:

Et+1 = qmt
qbt+1

1
qbt

= Et+1
Etq

b
t

Et+1qbt+1

1
qbt

= Et+1
Rb
t,t+1

Rm
t,t+1

and so:

qbmt = 1
EtPm

t

= 1
EtPm

t

Et
Et

= qbt
εt

Et
Et

= qbt
εt

Rm
t−1,t

Rb
t−1,t

which implies that:

Rbm
t,t+1 = εtR

b
t

Rb
t−1,t

Rm
t−1,t

Proof of Theorem 4. Summarising the equilibrium and optimization equations gives
the following characterization of equilibrium. Given states {Mt, µt−2, µt−1, Rt−1} and
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current policy µt, we can solve for the equilibrium variables at time t:

(
cnt

1,t, c
nt
2,t,x

nt+1
t ,ynt

t
,π

nt
t ,d

nt
t , εt, R

bn
t , R

dn
t ,η

nt
t

)
using the equations for agent choices:

x
n1
0,t =

(
αz(1− µn1

t )εn1
t

Rbn0
t,t+1

) 1
1−α

, y
n1
1,t = z

(
αz(1− µn1

t )εn1
t

Rbn0
t−1,t

) α
1−α

,

π
n1
1,t =

(
αz(1− µn1

t )εn1
t

(Rbn0
t−1,t)α

) 1
1−α (1− α

α

)
c

n1
1,t = (1− β)π1,t

(1− µn1
t )εn1

t

d
n1
1,t = βπ

n1
1,t, c

n2
2,t =

Rdn2
t−1,tβπ

n1
1,t−1

εn2
t

.

ηn0
0,t =

(
ζn0

0 (Rbn0
t )−

α
1−α

)γ0

∑
n′0

(
ζ
n′0
0 (Rbn′0

t )−
α

1−α
)γ0 , ηn2

2,t =

(
ζn2

2 Rdn2
t−1,t/ε

n2
t

)γ2

∑
L′
(
ζ
n′2
2 R

dn′2
t−1,t/ε

n′2
t

)γ2

ηn1
1,t =

(
ζn1

1 (εn1
t (1− µn1

t ))
1

1−α+β−1
)γ1

∑
n′0n
′
1

(
ζ
n′1
1

(
ε
n′1
t (1− µn

′
1
t )
) 1

1−α+β−1
)γ1 ,

fund equations:

Rbn
t,t+1 = εnt

Rb
t−1,t

Rn
t−1,t

Rb
t,t+1 Rdn

t,t+1 = Rn
t,t+1

q$
tMt + qbtBt + qstSt =Dt ηm2,t+1Dt = q$

tMt
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and the market clearing conditions:

ηn1,t
∑
n0

ηn0
0,t−1y

(n0,n)
1,t = ηn0,t

∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn1,t

∑
n0

ηn0
0,t−1c

(n0,n)
1,t

+ ηn2,t
∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

Dt =
∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t

qbtBt =
∑
n0,n1

ηn0
0,tη

n1
1,t+1ε

n0
t x

(n0,n1)
0,t

q$
tMt = ηm2,tDt +

∑
n1

ηm0,t
qbt
qbmt

x
(m,n1)
0,t

St = 1

(i) Solve for εt: We start by solving for εt. Substituting the fund returns into the
agent choices gives:

ηn0
0,t =

(
ζn0

0 (Rn0
t−1,t/ε

n0
t )

α
1−α

)γ0

∑
n′0

(
ζ
n′0
0 (εn

′
0
t /R

n′0
t−1,t)−

α
1−α

)γ0 ηn2
2,t =

(
ζn2

2 Rn2
t−1,t/ε

n2
t

)γ2

∑
L′
(
ζ
n′2
2 R

n′2
t−1,t/ε

n′2
t

)γ2

Now, return to the goods market clearing condition. After rearranging, we have:

ηn1,t
∑
n0

ηn0
0,t−1

(
y

(n0,n)
1,t − c(n0,n)

1,t

)
= ηn0,t

∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

where the LHS can be computed using:

y
(n0,n)
1,t − c(n0,n)

1,t

= z

(
αz(1− µnt )εnt

Rbn0
t−1,t

) α
1−α

− (1− β)
(1− µnt )εnt

(
αz(1− µnt )εnt

(Rbn0
t−1,t)α

) 1
1−α (1− α

α

)

= (1− (1− β)(1− α)) z
(
αz(1− µnt )εnt

Rbn0
t−1,t

) α
1−α

= (1− (1− β)(1− α)) z

 αz(1− µnt )εnt
εn0
t−1

Rbt−2,t−1
R
n0
t−2,t−1

Rb
t−1,t


α

1−α

= (1− (1− β)(1− α)) y(n0,n)
1,t
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and so:

ηn1,t
∑
n0

ηn0
0,t−1

(
y

(n0,n)
1,t − c(n0,n)

1,t

)

= ηn1,t
∑
n0

ηn0
0,t−1 (1− (1− β)(1− α)) z

(
αz(1− µnt )εnt

Rbn0
t−1,t

) α
1−α

= ηn1,t (1− (1− β)(1− α)) z(αz(1− µnt )εnt )
α

1−α
∑
n0

ηn0
0,t−1

Rbn0
t−1,t

and where the RHS can be computed using:

ηn0,t
∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

= ηn0,t
∑
n1

ηn1
1,t+1

(
αz(1− µn1

t+1)εn1
t+1

Rbn
t,t+1

) 1
1−α

+ ηn2,t
∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

Rdn
t−1,tβ

εnt

(
αz(1− µn1

t−1)εn1
t−1

(Rbn0
t−2,t−1)α

) 1
1−α (1− α

α

)

=

(
ζn0 (Rn

t−1,t/ε
n
t )

α
1−α

)γ0

∑
n′

(
ζn
′

0 (Rn′
t−1,t/ε

n′
t )

α
1−α

)γ0

∑
n1

ηn1
1,t+1

(
αzRn

t−1,t(1− µn1
t+1)εn1

t+1

εntR
b
t−1,tR

b
t,t+1

) 1
1−α

+

(
ζn2R

n
t−1,t/ε

n
t

)γ2

∑
n′

(
ζn
′

2 R
n′
t−1,t/ε

n′
t

)γ2

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

Rn
t−1,tβ

εnt

(
αz(1− µn1

t−1)εn1
t−1

(Rbn0
t−2,t−1)α

) 1
1−α (1− α

α

)

=

(
ζn0 (Rn

t−1,t/ε
n
t )

α
1−α

)γ0

∑
n′

(
ζn
′

0 (Rn′
t−1,t/ε

n′
t )

α
1−α

)γ0

(
Rn
t−1,t

εnt

) 1
1−α ∑

n1

ηn1
1,t+1

(
αz(1− µn1

t+1)εn1
t+1

Rb
t−1,tR

b
t,t+1

) 1
1−α

+

(
ζn2R

n
t−1,t/ε

n
t

)γ2

∑
n′

(
ζn
′

2 R
n′
t−1,t/ε

n′
t

)γ2

Rn
t−1,tβ

εnt

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

(
αz(1− µn1

t−1)εn1
t−1

(Rbn0
t−2,t−1)α

) 1
1−α (1− α

α

)

= (ζn0 )γ0

(
Rn
t−1,t

εnt

) 1+αγ0
1−α 1

ν̄γ0
0,t

∑
n1

ηn1
1,t+1

(
αz(1− µn1

t+1)εn1
t+1

Rb
t−1,tR

b
t,t+1

) 1
1−α

+ (ζn2 )γ2

(
Rn
t−1,t

εnt

)1+γ2 1
ν̄γ2

2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

(
αz(1− µn1

t−1)εn1
t−1

(Rbn0
t−2,t−1)α

) 1
1−α (1− α

α

)

Under the assumption that 1+αγ0
1−α = 1 + γ2 and (ζn0 )γ0 = (ζn2 )γ2 , we can take out the

50



n specific component to get:

ηn0,t
∑
n1

ηn1
1,t+1x

(n,n1)
0,t + ηn2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1c

(n0,n1,n)
2,t

= (ζn2 )γ2

(
Rn
t−1,t

εnt

)1+γ2
 1
ν̄γ0

0,t

∑
n1

ηn1
1,t+1

(
αz(1− µn1

t+1)εn1
t+1

Rb
t−1,tR

b
t,t+1

) 1
1−α

+ 1
ν̄γ2

2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

(
αz(1− µn1

t−1)εn1
t−1

(Rbn0
t−2,t−1)α

) 1
1−α (1− α

α

)
So, the market clearing condition in goods market n becomes:

ηn1,t (1− (1− β)(1− α)) z(αz(1− µnt )εnt )
α

1−α
∑
n0

ηn0
0,t−1

Rbn0
t−1,t

= (ζn2 )γ2

(
Rn
t−1,t

εnt

)1+γ2
 1
ν̄γ0

0,t

∑
n1

ηn1
1,t+1

(
αz(1− µn1

t+1)εn1
t+1

Rb
t−1,tR

b
t,t+1

) 1
1−α

+ 1
ν̄γ2

2,t

∑
n0,n1

ηn0
0,t−2η

n1
1,t−1

(
αz(1− µn1

t−1)εn1
t−1

(Rbn0
t−2,t−1)α

) 1
1−α (1− α

α

)
Dividing the market clearing condition in market n by the market clearing condition
in market n′ gives:

 ζn1 (εnt (1− µnt ))
1

1−α+β−1

ζn
′

1

(
εn
′
t (1− µn′t )

) 1
1−α+β−1


γ1 (

(1− µnt )εnt
(1− µn′t )εn′t

) α
1−α

=
(
ζn2
ζn
′

2

)γ2 (Rn
t−1,t/ε

n

Rn′
t−1,t/ε

n′

)1+γ2

which implies that:

(
εnt
εn
′
t

) γ1+α
1−α −γ1(1−β)+1+γ2 ( 1− µnt

1− µn′t

) γ1+α
1−α −γ1(1−β)

=
(
ζn2
ζn
′

2

)γ2 ( ζn1
ζn
′

1

)−γ1 (Rn
t−1,t

Rn′
t−1,t

)1+γ2

which gives:

εnt
εn
′
t

=

( ζn2
ζn
′

2

)γ2 ( ζn1
ζn
′

1

)−γ1 (Rn
t−1,t

Rn′
t−1,t

)1+γ2 (1− µn′t
1− µnt

) γ1+α
1−α −γ1(1−β)


1

γ1+α
1−α +1+γ2−γ1(1−β)
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and so:

εt =
ζγ1

1 ζ
−γ2
2

(
R$
t−1,t

Rb
t−1,t

)1+γ2

(1− µt)
γ1+α
1−α −γ1(1−β)

( γ1+α
1−α +1+γ2−γ1(1−β))−1

Let ζ̂n := ζn/ζn
′ , R̂n

t,t+1 := Rn
t,t+1/R

n′
t,t+1, and ε̂nt := εnt /ε

n′
t . So, that:

ε̂nt =
[(
ζ̂n
)γ2−γ1 (

R̂n
t−1,t

)1+γ2 (µ̂nt )
γ1+α
1−α −γ1(1−β)

]( γ1+α
1−α +1+γ2−γ1(1−β))−1

and

ε̂nt
R̂n
t−1,t

=

(ζ̂n)γ2−γ1

 µ̂nt
R̂n
t−1,t


γ1+α
1−α −γ1(1−β)


( γ1+α

1−α +1+γ2−γ1(1−β))−1

Returning agent decisions, we have that;

ηn0
0,t =

(
ζn0(Rn0

t−1,t/ε
n0
t )

α
1−α

)γ0

∑
n′0

(
ζn
′
0(εn

′
0
t /R

n′0
t−1,t)−

α
1−α

)γ0 = 1

1 +
((
ε̂n0
t /R̂

n0
t−1,t

) 1
1−α /ζ̂n

)γ0

ηn2
2,t =

(
ζn2Rn2

t−1,t/ε
n2
t

)γ2

∑
L′
(
ζn
′
2R

n′2
t−1,t/ε

n′2
t

)γ2 = 1
1 +

((
ε̂n2
t /R̂

n2
t−1,t

)
/ζ̂n

)γ2

(ii) Solve for Rb
t,t+1: We have the following equations for the fund budget con-

straint, the bond market, the money market, the deposit market, and the equity
market:

Dt = qbtBt + q$
tMt + qstSt

qbtBt =
∑
n0,n1

ηn0
0,tη

n1
1,t+1ε

n0
t x

(n0,n1)
0,t

q$
tMt = ηm2,tDt +

∑
n1

ηm0,tη
n1
1,t+1εt

Rb
t−1,t

R$
t−1,t

x
(m,n1)
0,t

Dt =
∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t

St = 1
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Sub into the fund budget constraint:

∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t =

∑
n0,n1

ηn0
0,tη

n1
1,t+1ε

n0
t x

(n0,n1)
0,t + ηm2,t

∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t

+
∑
n1

ηm0,tη
n1
1,t+1εt

Rb
t−1,t

Rm
t−1,t

x
(m,n1)
0,t + qst

and so after rearranging we have:

(1− ηm2,t)
∑
n0,n1

ηn0
0,t−1η

n1
1,td

(n0,n1)
1,t

=
∑
n1

ηn1
1,t+1

(∑
n0

ηn0
0,tε

n0
t x

(n0,n1)
0,t + ηm0,tεt

Rb
t−1,t

Rm
t−1,t

x
(m,n1)
0,t

)
+ qst

=
∑
n1

ηn1
1,t+1

(
ηm0,tε

m
t

(
1 +

Rb
t−1,t

Rm
t−1,t

)
x

(m,n1)
0,t + ηp0,tε

p
tx

(p,n1)
0,t

)
+ qst

Substituting returns into agent decisions gives:

x
n1
0,t =

αz(1− µn1
t )εn1

t

εn0
t
Rbt−1,t
R
n0
t−1,t

Rb
t,t+1


1

1−α

d
n1
1,t = β

 αz(1− µn1
t )εn1

t

(εn0
t
Rbt−2,t
R
n0
t−2,t

Rb
t−1,t)α


1

1−α (1− α
α

)
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So, we have that:

(1− ηm2,t)
∑
n0,n1

ηn0
0,t−1η

n1
1,tβ

 αz(1− µn1
t )εn1

t

(εn0
t
Rbt−2,t
R
n0
t−2,t

Rb
t−1,t)α


1

1−α (1− α
α

)

=
∑
n1

ηn1
1,t+1

ηm0,tεmt
(

1 +
Rb
t−1,t

Rm
t−1,t

)αz(1− µn1
t )εn1

t

εmt
Rbt−1,t
Rmt−1,t

Rb
t,t+1


1

1−α

+ ηp0,tε
p
t

αz(1− µn1
t )εn1

t

εpt
Rbt−1,t
Rpt−1,t

Rb
t,t+1


1

1−α
+ qst

⇒
(
Rb
t,t+1

)
(1− ηm2,t)1−α

∑
n0,n1

ηn0
0,t−1η

n1
1,tβ

αz(1− µn1
t )εn1

t(
εn0
t
Rbt−2,t
R
n0
t−2,t

)α


1
1−α (1− α

α

)
1−α

=
(
Rb
t−1,t

)α
∑

n1

ηn1
1,t+1

ηm0,tεmt
(

1 +
Rb
t−1,t

Rm
t−1,t

)αz(1− µn1
t )εn1

t

εmt
Rbt−1,t
Rmt−1,t


1

1−α

+ηp0,tεpt

αz(1− µn1
t )εn1

t

εpt
Rbt−1,t
Rpt−1,t


1

1−α
+ (Rb

t,t+1)
1

1−α qst


1−α

⇒
Rb
t,t+1(

Rb
t−1,t

)α =



∑
n1 η

n1
1,t+1

αz(1−µn1
t )εn1

t
Rb
t−1,t

Rm
t−1,t


1

1−α (
ηm0,tε

m
t

(
1 + Rbt−1,t

Rmt−1,t

) (
1
εmt

) 1
1−α + ηp0,t

)
+ (Rb

t,t+1)
1

1−α qst

ηp2,t
∑
n0,n1 βη

n0
0,t−1η

n1
1,t

 αz(1−µn1
t )εn1

t(
ε
n0
t

Rb
t−2,t

R
n0
t−2,t

)α


1
1−α (

1−α
α

)



1−α

In the steady state, we have:

R =

∑
n1 η

n1
1

(
αz(1−µn1 )εn1

R
b

R
m

) 1
1−α (

ηm0 ε
m

(
1 + R

b

R
m

) (
1
εm

) 1
1−α + ηp

(
1
εp

) 1
1−α

)
+R

1
1−α qs

(1− ηm2 )∑n0,n1 βη
n0
0 η

n1
1

αz(1−µn1 )εn1(
εn0 R

b

R
n0

)α
 1

1−α (
1−α
α

)
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Return on Money: Now return to the money market:

qmt Mt = ηm2,tDt +
∑
n1

ηm0,tη
n1
1,t+1εt

Rb
t−1,t

Rm
t−1,t

x
(m,n1)
0,t

= ηm2,t
∑
n0,n1

ηn0
0,t−1η

n1
1,tβ

 αz(1− µn1
t )εn1

t

(εn0
t
Rbt−2,t
R
n0
t−2,t

Rb
t−1,t)α


1

1−α (1− α
α

)

+
∑
n1

ηm0,tη
n1
1,t+1εt

Rb
t−1,t

Rm
t−1,t

αz(1− µn1
t )εn1

t

εmt
Rbt−1,t
Rmt−1,t

Rb
t,t+1


1

1−α

and:

Rm
t,t+1 = qmt+1

qmt
=
(
Mt

Mt+1

)η
m
2,t+1Dt+1 +∑

n1 η
m
0,t+1η

n1
1,t+2εt+1

Rbt,t+1
Rmt,t+1

x
(m,n1)
0,t+1

ηm2,tDt +∑
n1 η

m
0,tη

n1
1,t+1εt

Rbt−1,t
Rmt−1,t

x
(m,n1)
0,t


so in the steady state, this is:

R
m = 1/µM

Equity Price: The equity price satisfies:

qst = 1
Rt,t+1

(
πst+1 + qst+1

)

In the steady state, this implies that:

q̄s = π̄s

R̄b − 1

Proof of Theorem 5. We consider the value for an agent who chooses to default when
other agents are choosing to not default. We solve the problem recursively. At age 2,
an agent who has defaulted and joined a fund taking defaulting agents can only hold
cash and so only trade on the public marketplace. Taking price processes as given,
an agent with deposits d chooses on which platform to search to solve problem (B.9)
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below (dropping the explicit i superscript and the time subscript on the choice n2):

V̌2,t+2(d) = E
[
max
c

{
ζo2,t+2 + u(c)

}]
s.t. c ≤ Ro

t+1,t+2d/ε
o
t+2,

(B.9)

where V2,t+2 is the value function at the start of the agent’s final period. Evaluating
this expression gives:

V̌2,t+2(d) = log (ν̌2,t+2d)

where ν̌2,t+2 := Rt+1,t+2/εt+2.
At age 1, the agent cannot default if they end up trading on the private platform.

So, their value is:

V p
1,t+1(π) = max

c,d
{(1− β)u(c) + βV2,t+2 (d)}

s.t. d ≤ π − (1− µt+1)c,

and so we have:

V p
1,t+1(π) = (1− β) log

(
(1− β)π

εpt+1(1− µpt+1)

)
+ β log (ν̄2,t+2βπ)

= log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log (εpt+2(1− µpt+1)) + log(π)

However, if they trade on the public marketplace, then they can choose cash trades,
default, and go to a bank accepting cash trades without reporting them to the ledger.
In this case, their value at t = 1 is given by:

V̌ o
1,t+1(π) = max

c,d

{
(1− β)u(c) + βV̌2,t+2 (d)

}
s.t. d ≤ π̌ − εt+1c,

where π̌ is the profit if the agent defaults. As before, we have that:

c1,t+2 = (1− β)π̌
εnt+1(1− µnt+1) , d1,t+1 = βπ̌
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And so we have:

V̌ n
1,t+1(π) = (1− β) log

(
(1− β)π̌

εnt+1(1− µnt+1)

)
+ β log (ν̌2,t+2βπ̌)

= log
(
(1− β)1−βββ

)
+ β log (ν̌2,t+2)− (1− β) log

(
εnt+2(1− µnt+1)

)
+ log(π̌)

Now consider the problem of an agent at age 0 during the morning market. If
they choose n1 = o intending to repay, then the same as before:

V0,t = Et
[
max
n0,x,π

{
ζn0

0,t + ζo1,t+1 + V o
1,t+1(π)

}]
s.t. (B.10)

π = εot+1(1− µot+1)zxα −Rbn0
t,t+1x

For a given choice of n0, they choose x to maximize:

max
x

{
εn1
t+1(1− µot+1)zxα − εn0Rbn0

t,t+1x
}

Taking the FOC gives that producer labor demand, output, and profit are given by:

x0,t =
(
αz(1− µn0

t+1)
Rbn0
t,t+1

) 1
1−α

, yn0
1,t+1 = z

(
αz(1− µot+1)

Rbn0
t,t+1

) α
1−α

,

π1,t+1 =
(
εot+1αz(1− µot+1)

(Rbn0
t,t+1)α

) 1
1−α (1− α

α

)
.

Returning to the value functions, we have that:

V o
1,t+1(π) = (1− β) log

(
(1− β)π

εot+1(1− µot+1)

)
+ β log (ν̄2,t+2βπ)

= log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log

(
εot+2(1− µot+1)

)
+ log(π)

If they choose n1 = o intending to default, then they choose where to purchase
input goods, where to sell output goods, and the quantity of input goods to solve
(B.11) below:

V̌0,t = Et
[
max
n0,x,π

{
ζn0

0,t + ζo1,t+1 + V̌ o
1,t+1(π̌)

}]
s.t. (B.11)

π̌ = εn1
t+1(1− µot+1)zxα −Rbn0

t,t+1x
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For a given choice of n0, they choose x to maximize:

max
x

{
εot+1(1− µot+1)zxα − εn0χx

}
Taking the FOC gives producer labor demand, output, and profit to be:

x0,t =
(
αz(1− µot+1)

εn0χ

) 1
1−α

, yn0
1,t+1 = z

(
αz(1− µot+1)

εn0χ

) α
1−α

,

π̌1,t+1 =
(
εot+1αz(1− µot+1)

(εn0χ)α

) 1
1−α (1− α

α

)
.

So, their value is:

V̌ o
1,t+1(π̌) = (1− β) log

(
(1− β)π

εot+1(1− µot+1)

)
+ β log (ν̌2,t+2βπ̌)

= log
(
(1− β)1−βββ

)
+ β log (ν̌2,t+2)− (1− β) log

(
εot+2(1− µot+1)

)
+ log(π̌)

Incentive compatibility: So, for a given n0, the agent chooses to not default if:

V o
1,t+1(π) ≥ V̌ o

1,t+1(π̌)

which is equivalent to:

log
(
(1− β)1−βββ

)
+ β log (ν̄2,t+2)− (1− β) log

(
εot+2(1− µot+1)

)
+ log(π)

≥ log
(
(1− β)1−βββ

)
+ β log (ν̌2,t+2)− (1− β) log

(
εot+2(1− µot+1)

)
+ log(π̌)

and so:

log
(
ν̄2,t+2

ν̌2,t+2

)
+ log

(
π

π̌

)
≥ 0

⇔ ν̄2,t+2

ν̌2,t+2
≥ π̌

π
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where:

ν̄2,t+2

ν̌2,t+2
=
 Rt+1,t+2/εt+2∑

n2

(
ζn2
t+2R

n2
t+1,t+2/ε

n2
t+2

)γ2

βγ2

π̌

π
=
(
Rbn0
t,t+1

χ

) α
1−α

B.3 Platform Problem

Substituting the equilibrium conditions into the profit function:

πst = µtη
p
1,t
∑
n0

ηn0
0,t−1y

(n0,p)
1,t

= µt

 1

1 +
(

1
ζ

)γ1 ( εt
1−µt

)( 1
1−α+β−1)γ1



×
∑
n0


1

1 +
(
ζ
n′0
ζn0

)γ0
(
ε
n0
t ((1−κ)Rbt−1,t+κR

n′0
t−1,t)

ε
n′0
t ((1−κ)Rbt−1,t+κR

n0
t−1,t)

)− αγ0
1−α



× z

 αz(1− µt)
ε
n0
t−1R

b
t−2,t−1

(1−κ)Rbt−2,t−1+κRn0
t−2,t−1

Rb
t−1,t


α

1−α

= z

(
αz

Rb
t−1,t

) α
1−α

 µt(1− µt)
α

1−α

1 +
(

1
ζ

)γ1 ( εt
1−µt

)( 1
1−α+β−1)γ1



×
∑
n0


(

(1−κ)Rbt−2,t−1+κRn0
t−2,t−1

ε
n0
t−1R

b
t−2,t−1

) α
1−α

1 +
(
ζ
n′0
ζn0

)γ0
(
ε
n0
t ((1−κ)Rbt−1,t+κR

n′0
t−1,t)

ε
n′0
t ((1−κ)Rbt−1,t+κR

n0
t−1,t)

)− αγ0
1−α


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which can be expanded as:

πst = z

(
αz

Rb
t−1,t

) α
1−α

 µt(1− µt)
α

1−α

1 +
(

1
ζ

)γ1 ( εt
1−µt

)( 1
1−α+β−1)γ1



×


(

(1−κ)Rbt−2,t−1+κR$
t−2,t−1

εt−1Rbt−2,t−1

) α
1−α

1 + (ζ)γ0
(
εt((1−κ)Rbt−1,t+κR

$
t−1,t)

Rbt−1,t

)− αγ0
1−α

+ 1

1 +
(

1
ζ

)γ0
(

Rbt−1,t
εt((1−κ)Rbt−1,t+κR

$
t−1,t)

)− αγ0
1−α



where εt is given by:

εt =
 (ζ)γ1−γ2

(1− µt)
γ1+α
1−α −γ1(1−β)

(
(1− κ)Rb

t−1,t + κR$
t−1,t

Rb
t−1,t

)1+γ2
( γ1+α

1−α +1+γ2−γ1(1−β))−1

We denote:

πst = πs(µt, εt, εt−1, R
b
t−1,t, R

b
t−2,t−1, R

$
t−1,t, R

$
t−2,t−1)

εt = ε(µt, Rb
t−1,t, R

$
t−1,t).

The Lagrangian for the platform is:

L =
∞∑
t=0

ξ̂0,tπ
s
t (µt, εt, εt−1, R

b
t−1,t, R

b
t−2,t−1, R

$
t−1,t, R

$
t−2,t−1)

The FOC for µt is given by:

0 = ξ̂0,t
∂πst (µt, εt, εt−1, R

b
t−1,t, R

b
t−2,t−1, R

$
t−1,t, R

$
t−2,t−1)

∂µt

+ ξ̂0,t
∂πst (µt, εt, εt−1, R

b
t−1,t, R

b
t−2,t−1, R

$
t−1,t, R

$
t−2,t−1)

∂εt

∂ε(µt, Rb
t−1,t, R

$
t−1,t)

∂µt

+ ξ̂0,t+1
∂πst+1(µt+1, εt+1, εt, R

b
t,t+1, R

b
t−1,t, R

$
t,t+1, R

$
t−1,t)

∂εt

∂ε(µt, Rb
t−1,t, R

$
t−1,t)

∂µt
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where:

∂πst (µt, εt, εt−1, R
b
t−1,t, R

b
t−2,t−1, R

$
t−1,t, R

$
t−2,t−1)

∂µt

= z

(
αz

Rb
t−1,t

) α
1−α


(

1 +
(

1
ζ

)γ1 ( εt
1−µt

)( 1
1−α+β−1)γ1

)(
(1− µt)

α
1−α − µt α

1−α(1− µt)
α

1−α−1
)

(
1 +

(
1
ζ

)γ1 ( εt
1−µt

)( 1
1−α+β−1)γ1

)2

−
µt(1− µt)

α
1−α

(
1

1−α + β − 1
)
γ1
(

1
ζ

)γ1 (εt)(
1

1−α+β−1)γ1 (1− µt)−( 1
1−α+β−1)γ1−1(

1 +
(

1
ζ

)γ1 ( εt
1−µt

)( 1
1−α+β−1)γ1

)2



×
∑
n0


z
(

(1−κ)Rbt−2,t−1+κRn0
t−2,t−1

ε
n0
t−1R

b
t−2,t−1

) α
1−α

1 +
(
ζ
n′0
ζn0

)γ0
(
ε
n0
t ((1−κ)Rbt−1,t+κR

n′0
t−1,t)

ε
n′0
t ((1−κ)Rbt−1,t+κR

n0
t−1,t)

)− αγ0
1−α


and

∂πst (µt, εt, εt−1, R
b
t−1,t, R

b
t−2,t−1, R

$
t−1,t, R

$
t−2,t−1)

∂εt

= z

(
αz

Rbt−1,t

) α
1−α

µt(1− µt)
α

1−α ×

(
1 +

(
1
ζ

)γ1 ( εt
1− µt

)( 1
1−α+β−1)γ1

)−1

×
(

1
1− α + β − 1

)
γ1

(
1
ζ

)γ1

(εt)(
1

1−α+β−1)γ1 (1− µt)−( 1
1−α+β−1)γ1−1

×


(

(1−κ)Rbt−2,t−1+κR$
t−2,t−1

εt−1Rbt−2,t−1

) α
1−α

(
1 + (ζ)γ0

(
εt((1−κ)Rb

t−1,t+κR
$
t−1,t)

Rb
t−1,t

)− αγ0
1−α
)2 (ζ)γ0

(
(1− κ)Rbt−1,t + κR$

t−1,t

Rbt−1,t

)− αγ0
1−α

αγ0

1− αε
− αγ0

1−α−1
t

− 1(
1 +

(
1
ζ

)γ0
(

Rb
t−1,t

εt((1−κ)Rb
t−1,t+κR

$
t−1,t)

)− αγ0
1−α
)2

(
1
ζ

)γ0
(

Rbt−1,t

(1− κ)Rbt−1,t + κR$
t−1,t

)− αγ0
1−α

αγ0

1− αε
αγ0
1−α−1
t


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and

∂πst+1(µt+1, εt+1, εt, R
b
t,t+1, R

b
t−1,t, R

$
t,t+1, R

$
t−1,t)

∂εt

= z

(
αz

Rbt,t+1

) α
1−α

 µt+1(1− µt+1)
α

1−α

1 +
(

1
ζ

)γ1 ( εt+1
1−µt+1

)( 1
1−α+β−1)γ1



×

(
(1−κ)Rbt−1,t+κR

$
t−1,t

Rb
t−1,t

) α
1−α (

− α
1−α

)
ε

− α
1−α

t

1 + (ζ)γ0

(
εt+1((1−κ)Rbt,t+1+κR$

t,t+1)
Rbt,t+1

)− αγ0
1−α

and

∂ε(µt, Rbt−1,t, R
$
t−1,t)

∂µt

=

(ζ)γ1−γ2

(
(1− κ)Rbt−1,t + κR$

t−1,t

Rbt−1,t

)1+γ2
( γ1+α

1−α +1+γ2−γ1(1−β))−1

×

(
−

γ1+α
1−α − γ1(1− β)

γ1+α
1−α + 1 + γ2 − γ1(1− β)

)
(1− µt)

−
γ1+α
1−α −γ1(1−β)

γ1+α
1−α +1+γ2−γ1(1−β)

We now characterize steady state equilibrium with an optimizing platform. We
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have that:

0 = ∂1π
s(µ, ε, ε, Rb, Rb, R$, R$)

+ ∂2π
s(µ, ε, ε, Rb, Rb, R$, R$)∂1ε(µ,Rb, R$)

+ ∂3π
s(µ, ε, ε, Rb, Rb, R$, R$)∂1ε(µ,Rb, R$)

ε =
 ζγ1−γ2

S1+γ2 (1− µ)
γ1+α
1−α −γ1(1−β)

 1
γ1+α
1−α +1+γ2−γ1(1−β)

Rb =

∑
n1 η

n1
1

(
αz(1−µn1 )εn1

S

) 1
1−α

(
ηm0

(εm)
α

1−α
(1 + S) + ηp0

)
+ qs

(1− ηm2 )∑n0,n1 η
n0
0 ηn1

1 β
(

1−α
α

)αz(1−µn1 )εn1(
εn0 Rb

Rn0

)α
 1

1−α

R$ = 1
µM

, S = Rb

(1− κ)Rb + κR$ , qs = πs

Rb − 1

πs = z
(
αz

Rb

) α
1−α

 µ(1− µ)
α

1−α

1 +
(

1
ζ

)γ1 ( ε
1−µ

)( 1
1−α+β−1)γ1


×

 (εS)−
α

1−α

1 + (ζ)γ0
(
ε
S

)− αγ0
1−α

+ 1

1 +
(

1
ζ

)γ0 (S
ε

)− αγ0
1−α


ηn0

0 =

(
ζn0(Rbn0)−

α
1−α

)γ0

∑
n′0

(
ζn
′
0(Rbn′0)−

α
1−α

)γ0

ηn1
1 =

(
ζn1 (εn1(1− µn1))

1
1−α+β−1

)γ1

∑
n′0n
′
1

(
ζn
′
1
(
εn
′
1(1− µn′1)

) 1
1−α+β−1

)γ1

ηn2
2 =

(
ζn2Rdn2/εn2

)γ2

∑
n′2

(
ζn
′
2Rdn′2/εn

′
2
)γ2

Rbn = εnt SnRb, Sn = Rb

(1− κ)Rb + κRn

Rdn = (1− κ)Rb + κRn = Rb/Sn
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with the supplemental equilibrium equations:

x
n1
0,t =

(
αz(1− µn1

t )εn1
t

Rbn0
t,t+1

) 1
1−α

, y
n1
1,t = z

(
αz(1− µn1

t )εn1
t

Rbn0
t−1,t

) α
1−α

,

π
n1
1,t =

(
αz(1− µn1

t )εn1
t

(Rbn0
t−1,t)α

) 1
1−α (1− α

α

)
c

n1
1,t = (1− β)π1,t

(1− µn1
t )εn1

t

d
n1
1,t = βπ

n1
1,t, c

n2
2,t =

Rdn2
t−1,tβπ

n1
1,t−1

εn2
t

.

B.4 Proofs for Platform Competition (Preliminary)

Proof of Proposition 1. (i) The market equilibrium is the same as in subsection 3.3
except that now (1 − µt) is replaced by (1 − µ1

t )/(1 − µ2
t ). If χ is sufficiently large

that the threat of exclusion from either platform is sufficient to incentive funds to
repay loans on that ledger, then qEL = q̃EL and there is no need to bargain over
enforcement because it doesn’t require cooperation. If χ is sufficiently low that only
exclusion from both platforms is sufficient to incentivize repayment, then for both L,
we have qEL = qE and q̃EL = 0 so outcome of the Nash Bargaining is cooperation on
enforcement without a transfer T = 0.
(ii) For ζ close to 1, when the trading advantage of platform 1 is not too large, the
possible outcomes look like those in subsection 3.3. That is, if χ is large, then both
platforms are able to enforce contract without cooperation and if χ is small, then
cooperation is required for any contract enforcement. However, when χ and ζ are
large, it is possible that, under non-cooperation, platform 1 can enforce contracts
while platform 2 cannot. In this case, ledger 1 becomes the dominant ledger and so
the currency market frictions become relevant.

Platform bargaining at t = 0 is now more complicated because the outside option
for platform 1 is more complicated. If χ and ζ are sufficiently large that ledger 1 can
incentivize contract enforcement on their ledger without cooperation and ςε < 1, then
q̃E1 > qE1 and so ledger 1 prefers the non-cooperative outcome. This means that the
transfer platform 2 would have to pay to get enforcement leads to negatives surplus:

qE0 − q̃E2 − T = qE1 − q̃E1 < 0

and so the bargaining breaks down.
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